simd-structts


Namesimd-structts JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttps://github.com/vshulyak/simd-structts
SummarySIMD StuctTS Model with various backends
upload_time2022-12-14 15:26:24
maintainer
docs_urlNone
authorVladimir Shulyak
requires_python>=3.7,<4.0
licenseMIT
keywords simd kalman time-series forecasting
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # simd-structts
[![pypi](https://img.shields.io/pypi/v/simd-structts)](https://pypi.org/project/simd-structts/)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/simd-structts)
[![Build Status](https://travis-ci.org/vshulyak/simd-structts.svg?branch=master)](https://travis-ci.org/vshulyak/simd-structts)
[![codecov](https://codecov.io/github/vshulyak/simd-structts/branch/master/graph/badge.svg)](https://codecov.io/github/vshulyak/simd-structts)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![License: MIT](https://img.shields.io/github/license/vshulyak/simd_structts)](https://github.com/vshulyak/simd-structts/blob/master/LICENSE)
[![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/vshulyak/simd-structts/issues)
Multivariate forecasting using StructTS/Unobserved Components model without MLE param estimation.

## 🤦🏾‍ Motivation

I love structts model and Kalman filters for forecasting. Sometimes you just want a model that works out of the box
without *designing* a model with a Kalman filter, especially if you need to use long seasonalites and exog variables.
Defining all these state space matrices gets tedious pretty quickly...

The code in this repo is an attempt to bring a familiar API to multivariate StructTS model, currently with the simdkalman library as a backend.

## 👩🏾‍🚀 Installation

      pip install simd-structts


## 📋 WIP:
- [x] Statsmodels and simdkalman backend implementation.
- [x] Equal filtered/smoothed/predicted states for level/trend models.
- [x] Proper testing for multiple python versions.
- [x] Equal filtered/smoothed/predicted states for exog components.
- [x] Equal filtered/smoothed/predicted states for long seasonal fourier components.
- [x] Passing tests for statsmodels-like initialization of model.
- [ ] Pretty API with ABC and stuff.
- [ ] Example notebook
- [ ] Gradient methods for finding optimal params

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/vshulyak/simd-structts",
    "name": "simd-structts",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7,<4.0",
    "maintainer_email": "",
    "keywords": "simd,kalman,time-series,forecasting",
    "author": "Vladimir Shulyak",
    "author_email": "vladimir@shulyak.net",
    "download_url": "https://files.pythonhosted.org/packages/87/48/17fdf31077041bedea13931967c614a42235c45466aadb75c03a9934ca47/simd_structts-0.2.1.tar.gz",
    "platform": null,
    "description": "# simd-structts\n[![pypi](https://img.shields.io/pypi/v/simd-structts)](https://pypi.org/project/simd-structts/)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/simd-structts)\n[![Build Status](https://travis-ci.org/vshulyak/simd-structts.svg?branch=master)](https://travis-ci.org/vshulyak/simd-structts)\n[![codecov](https://codecov.io/github/vshulyak/simd-structts/branch/master/graph/badge.svg)](https://codecov.io/github/vshulyak/simd-structts)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![License: MIT](https://img.shields.io/github/license/vshulyak/simd_structts)](https://github.com/vshulyak/simd-structts/blob/master/LICENSE)\n[![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/vshulyak/simd-structts/issues)\nMultivariate forecasting using StructTS/Unobserved Components model without MLE param estimation.\n\n## \ud83e\udd26\ud83c\udffe\u200d Motivation\n\nI love structts model and Kalman filters for forecasting. Sometimes you just want a model that works out of the box\nwithout *designing* a model with a Kalman filter, especially if you need to use long seasonalites and exog variables.\nDefining all these state space matrices gets tedious pretty quickly...\n\nThe code in this repo is an attempt to bring a familiar API to multivariate StructTS model, currently with the simdkalman library as a backend.\n\n## \ud83d\udc69\ud83c\udffe\u200d\ud83d\ude80 Installation\n\n      pip install simd-structts\n\n\n## \ud83d\udccb WIP:\n- [x] Statsmodels and simdkalman backend implementation.\n- [x] Equal filtered/smoothed/predicted states for level/trend models.\n- [x] Proper testing for multiple python versions.\n- [x] Equal filtered/smoothed/predicted states for exog components.\n- [x] Equal filtered/smoothed/predicted states for long seasonal fourier components.\n- [x] Passing tests for statsmodels-like initialization of model.\n- [ ] Pretty API with ABC and stuff.\n- [ ] Example notebook\n- [ ] Gradient methods for finding optimal params\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "SIMD StuctTS Model with various backends",
    "version": "0.2.1",
    "split_keywords": [
        "simd",
        "kalman",
        "time-series",
        "forecasting"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "274f33d37a54a2dbd467e73bcaa76848",
                "sha256": "fd5408ec0171ecdf7bb6336cf3106b3ce5ff273398fa59d1f7083622e76aff9e"
            },
            "downloads": -1,
            "filename": "simd_structts-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "274f33d37a54a2dbd467e73bcaa76848",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7,<4.0",
            "size": 20834,
            "upload_time": "2022-12-14T15:26:22",
            "upload_time_iso_8601": "2022-12-14T15:26:22.078450Z",
            "url": "https://files.pythonhosted.org/packages/3e/16/d8a8614fa47056a3f293118a6f15dcab43c9df72c633279d6a9ed22f7991/simd_structts-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "4049c408134994a811e7e16a05380d51",
                "sha256": "e70a341d2f98e029615d681def61e5f5abafcc6608ec6df7f09f6b033c50ba0c"
            },
            "downloads": -1,
            "filename": "simd_structts-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "4049c408134994a811e7e16a05380d51",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7,<4.0",
            "size": 16471,
            "upload_time": "2022-12-14T15:26:24",
            "upload_time_iso_8601": "2022-12-14T15:26:24.291252Z",
            "url": "https://files.pythonhosted.org/packages/87/48/17fdf31077041bedea13931967c614a42235c45466aadb75c03a9934ca47/simd_structts-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-14 15:26:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "vshulyak",
    "github_project": "simd-structts",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "tox": true,
    "lcname": "simd-structts"
}
        
Elapsed time: 0.07043s