simple-aesthetics-predictor


Namesimple-aesthetics-predictor JSON
Version 0.1.2 PyPI version JSON
download
home_page
Summary
upload_time2023-07-22 08:59:43
maintainer
docs_urlNone
authorShunsuke KITADA
requires_python>=3.8,<4.0
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🤗 Simple Aesthetics Predictor

[![CI](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/ci.yaml)
[![Release](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/deploy_and_release.yaml/badge.svg)](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/deploy_and_release.yaml)
![Python](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10-blue?logo=python)
[![PyPI](https://img.shields.io/pypi/v/simple-aesthetics-predictor.svg)](https://pypi.python.org/pypi/simple-aesthetics-predictor)

[CLIP](https://arxiv.org/abs/2103.00020)-based aesthetics predictor inspired by the interface of [🤗 huggingface transformers](https://huggingface.co/docs/transformers/index). This library provides a simple wrapper that can load the predictor using the `from_pretrained` method.

## Install

```shell
pip install simple-aesthetics-predictor
```

## How to Use

```python
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor

from aesthetics_predictor import AestheticsPredictorV1

#
# Load the aesthetics predictor
#
model_id = "shunk031/aesthetics-predictor-v1-vit-large-patch14"

model = AestheticsPredictorV1.from_pretrained(model_id)
processor = CLIPProcessor.from_pretrained(model_id)

#
# Download sample image
#
url = "https://github.com/shunk031/simple-aesthetics-predictor/blob/master/assets/a-photo-of-an-astronaut-riding-a-horse.png?raw=true"
image = Image.open(requests.get(url, stream=True).raw)

#
# Preprocess the image
#
inputs = processor(images=image, return_tensor="pt")

#
# Inference for the image
#
with torch.no_grad():
    outputs = model(**inputs)
prediction = outputs.logits

print(f"Aesthetics score: {prediction}")
```

## The Predictors found in 🤗 Huggingface Hub

- 🤗 [aesthetics-predictor-v1](https://huggingface.co/models?search=aesthetics-predictor-v1)
- 🤗 [aesthetics-predictor-v2](https://huggingface.co/models?search=aesthetics-predictor-v2)

## Acknowledgements

- LAION-AI/aesthetic-predictor: A linear estimator on top of clip to predict the aesthetic quality of pictures https://github.com/LAION-AI/aesthetic-predictor 
- christophschuhmann/improved-aesthetic-predictor: CLIP+MLP Aesthetic Score Predictor https://github.com/christophschuhmann/improved-aesthetic-predictor 

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "simple-aesthetics-predictor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4.0",
    "maintainer_email": "",
    "keywords": "",
    "author": "Shunsuke KITADA",
    "author_email": "shunsuke.kitada.0831@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3a/bb/ceb460fadfbe100909bbfa81f30893fe684202db07fe95e7b163241cf408/simple_aesthetics_predictor-0.1.2.tar.gz",
    "platform": null,
    "description": "# \ud83e\udd17 Simple Aesthetics Predictor\n\n[![CI](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/ci.yaml)\n[![Release](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/deploy_and_release.yaml/badge.svg)](https://github.com/shunk031/simple-aesthetics-predictor/actions/workflows/deploy_and_release.yaml)\n![Python](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10-blue?logo=python)\n[![PyPI](https://img.shields.io/pypi/v/simple-aesthetics-predictor.svg)](https://pypi.python.org/pypi/simple-aesthetics-predictor)\n\n[CLIP](https://arxiv.org/abs/2103.00020)-based aesthetics predictor inspired by the interface of [\ud83e\udd17 huggingface transformers](https://huggingface.co/docs/transformers/index). This library provides a simple wrapper that can load the predictor using the `from_pretrained` method.\n\n## Install\n\n```shell\npip install simple-aesthetics-predictor\n```\n\n## How to Use\n\n```python\nimport requests\nimport torch\nfrom PIL import Image\nfrom transformers import CLIPProcessor\n\nfrom aesthetics_predictor import AestheticsPredictorV1\n\n#\n# Load the aesthetics predictor\n#\nmodel_id = \"shunk031/aesthetics-predictor-v1-vit-large-patch14\"\n\nmodel = AestheticsPredictorV1.from_pretrained(model_id)\nprocessor = CLIPProcessor.from_pretrained(model_id)\n\n#\n# Download sample image\n#\nurl = \"https://github.com/shunk031/simple-aesthetics-predictor/blob/master/assets/a-photo-of-an-astronaut-riding-a-horse.png?raw=true\"\nimage = Image.open(requests.get(url, stream=True).raw)\n\n#\n# Preprocess the image\n#\ninputs = processor(images=image, return_tensor=\"pt\")\n\n#\n# Inference for the image\n#\nwith torch.no_grad():\n    outputs = model(**inputs)\nprediction = outputs.logits\n\nprint(f\"Aesthetics score: {prediction}\")\n```\n\n## The Predictors found in \ud83e\udd17 Huggingface Hub\n\n- \ud83e\udd17 [aesthetics-predictor-v1](https://huggingface.co/models?search=aesthetics-predictor-v1)\n- \ud83e\udd17 [aesthetics-predictor-v2](https://huggingface.co/models?search=aesthetics-predictor-v2)\n\n## Acknowledgements\n\n- LAION-AI/aesthetic-predictor: A linear estimator on top of clip to predict the aesthetic quality of pictures https://github.com/LAION-AI/aesthetic-predictor \n- christophschuhmann/improved-aesthetic-predictor: CLIP+MLP Aesthetic Score Predictor https://github.com/christophschuhmann/improved-aesthetic-predictor \n",
    "bugtrack_url": null,
    "license": "",
    "summary": "",
    "version": "0.1.2",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8892c4805e510862a5ddb7d34370ccd818e09a950c23500294a2d3a7b33efecb",
                "md5": "fa9d26d4d67d1d12415804b119799eb6",
                "sha256": "d624abbea19118ab51b613f14bb608b0b811d42fb1240ae2a9224a676c1bf262"
            },
            "downloads": -1,
            "filename": "simple_aesthetics_predictor-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fa9d26d4d67d1d12415804b119799eb6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4.0",
            "size": 5847,
            "upload_time": "2023-07-22T08:59:43",
            "upload_time_iso_8601": "2023-07-22T08:59:43.041734Z",
            "url": "https://files.pythonhosted.org/packages/88/92/c4805e510862a5ddb7d34370ccd818e09a950c23500294a2d3a7b33efecb/simple_aesthetics_predictor-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3abbceb460fadfbe100909bbfa81f30893fe684202db07fe95e7b163241cf408",
                "md5": "a2b2949e5a9b143bfafa72a7cf8eecf1",
                "sha256": "7d992ffd643be35ee56d540f9bc4d6e54f3734d995fc145a17996d018b18cec3"
            },
            "downloads": -1,
            "filename": "simple_aesthetics_predictor-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a2b2949e5a9b143bfafa72a7cf8eecf1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4.0",
            "size": 4047,
            "upload_time": "2023-07-22T08:59:43",
            "upload_time_iso_8601": "2023-07-22T08:59:43.935669Z",
            "url": "https://files.pythonhosted.org/packages/3a/bb/ceb460fadfbe100909bbfa81f30893fe684202db07fe95e7b163241cf408/simple_aesthetics_predictor-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-22 08:59:43",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "simple-aesthetics-predictor"
}
        
Elapsed time: 0.09486s