simplyincluded


Namesimplyincluded JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummarySimple way to find an optimal split.
upload_time2024-03-20 01:28:02
maintainerNone
docs_urlNone
authorHowell Lu
requires_pythonNone
licenseNone
keywords python pandas knockout rules linear optimization inclusion exclusion criteria
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# simplyincluded
An easy way to apply a simple inclusion criteria to a Pandas Dataframe to maximize an objective function.



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "simplyincluded",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, pandas, knockout rules, linear optimization, inclusion, exclusion, criteria",
    "author": "Howell Lu",
    "author_email": "<hl4631@nyu.edu>",
    "download_url": "https://files.pythonhosted.org/packages/85/2e/bf88a2eb25f5f5fe7e1d6d3f8ec293b49c8ab03696bd0346ac78c153d5d4/simplyincluded-1.0.0.tar.gz",
    "platform": null,
    "description": "\n# simplyincluded\nAn easy way to apply a simple inclusion criteria to a Pandas Dataframe to maximize an objective function.\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Simple way to find an optimal split.",
    "version": "1.0.0",
    "project_urls": null,
    "split_keywords": [
        "python",
        " pandas",
        " knockout rules",
        " linear optimization",
        " inclusion",
        " exclusion",
        " criteria"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2cd415636a8711e25adb0c534b8254f5548f537e5ac8f84d51a2cae22a0dff2a",
                "md5": "2f87394fd2db672ecccbeafaa122ef4a",
                "sha256": "fb12c07f91109892781678c31e0d383bbf598caeaaec540214b5727a3f79606d"
            },
            "downloads": -1,
            "filename": "simplyincluded-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2f87394fd2db672ecccbeafaa122ef4a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4432,
            "upload_time": "2024-03-20T01:28:00",
            "upload_time_iso_8601": "2024-03-20T01:28:00.997597Z",
            "url": "https://files.pythonhosted.org/packages/2c/d4/15636a8711e25adb0c534b8254f5548f537e5ac8f84d51a2cae22a0dff2a/simplyincluded-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "852ebf88a2eb25f5f5fe7e1d6d3f8ec293b49c8ab03696bd0346ac78c153d5d4",
                "md5": "11e489335754d746f7184e0a6c15abaf",
                "sha256": "e452b684d1d1328a65523c4d7245e4eb83e67b5f0ba2ec4f337c7b1b0aa51698"
            },
            "downloads": -1,
            "filename": "simplyincluded-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "11e489335754d746f7184e0a6c15abaf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4127,
            "upload_time": "2024-03-20T01:28:02",
            "upload_time_iso_8601": "2024-03-20T01:28:02.849363Z",
            "url": "https://files.pythonhosted.org/packages/85/2e/bf88a2eb25f5f5fe7e1d6d3f8ec293b49c8ab03696bd0346ac78c153d5d4/simplyincluded-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-20 01:28:02",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "simplyincluded"
}
        
Elapsed time: 0.32644s