simsi-transfer


Namesimsi-transfer JSON
Version 0.6.1 PyPI version JSON
download
home_pagehttps://github.com/kusterlab/SIMSI-Transfer
SummarySoftware-assisted reduction of missing values in phosphoproteomics and proteomics isobaric labeling data using MS2 spectrum clustering
upload_time2024-04-05 10:44:13
maintainerNone
docs_urlNone
authorFiras Hamood
requires_python<4.0,>=3.8
licenseApache-2.0
keywords mass spectrometry missing values clustering proteomics quantification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SIMSI-Transfer

[![PyPI version](https://img.shields.io/pypi/v/simsi_transfer.svg?logo=pypi&logoColor=FFE873)](https://pypi.org/project/simsi_transfer/)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/simsi_transfer.svg?logo=python&logoColor=FFE873)](https://pypi.org/project/simsi_transfer/)
[![PyPI downloads](https://img.shields.io/pypi/dm/simsi_transfer.svg)](https://pypistats.org/packages/simsi_transfer)

Transferring identifications using MS2 spectrum clustering with MaxQuant search results.

Hamood, F., Bayer, F. P., Wilhelm, M., Kuster, B., & The, M. (2022). _[SIMSI-Transfer: Software-assisted reduction of missing values in phosphoproteomic and proteomic isobaric labeling data using tandem mass spectrum clustering.](https://www.sciencedirect.com/science/article/pii/S1535947622000469)_ Molecular & Cellular Proteomics, 100238.

## Test dataset

For testing SIMSI-Transfer after installation, we recommend downloading the TMT11 MS2 raw files from this publication:
Thompson, A., Wölmer, N., Koncarevic, S., Selzer, S. et al., _[TMTpro: Design, Synthesis, and Initial Evaluation of a Proline-Based Isobaric 16-Plex Tandem Mass Tag Reagent Set.](https://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b04474)_ Analytical Chemistry 2019, 91, 15941–15950. doi:10.1021/acs.analchem.9b04474

PRIDE link: https://www.ebi.ac.uk/pride/archive/projects/PXD014750

Raw files for TMT-MS2:
- 19070-001.raw
- 19070-002.raw
- 19070-003.raw
- 19070-006.raw
- 19070-007.raw
- 19070-008.raw

The MaxQuant results needed as input to SIMSI-Transfer can be downloaded from Zenodo: 
- [10.5281/zenodo.6365902](https://zenodo.org/record/6365902)

For reference, the original SIMSI-Transfer results (v0.1.0) for this dataset can also be downloaded from Zenodo:
- [10.5281/zenodo.6365638](https://zenodo.org/record/6365638)

## Running SIMSI-Transfer using the GUI

On Windows, you can download the `SIMSI-Transfer_GUI_windows.zip` from the latest release, unzip it and open `SIMSI-Transfer.exe` to start the GUI (no installation necessary).

Alternatively, on all platforms, first install SIMSI-Transfer as explained below. Then install `PyQt5` (`pip install PyQt5`) and run:

```shell
python gui.py
```

## Running SIMSI-Transfer from the command line

First install SIMSI-Transfer **as explained below**, then run SIMSI-Transfer:

```shell
python -m simsi_transfer --mq_txt_folder </path/to/txt/folder> --raw_folder </path/to/raw/folder> --output_folder </path/to/output/folder>
```

Alternative command for MS3 acquisition, using the TMT correction factor file exported from MaxQuant:

```shell
python -m simsi_transfer --mq_txt_folder </path/to/txt/folder> --raw_folder </path/to/raw/folder> --output_folder </path/to/output/folder> --tmt_ms_level ms3 --tmt_requantify --tmt_reporter_correction_file </path/to/correction/factor/file.txt>
```

Alternative command using the meta input file for MS3 acquisition, with filtered decoys:

```shell
python -m simsi_transfer --meta_input_file </path/to/meta/file> --output_folder </path/to/output/folder> --tmt_ms_level ms3 --tmt_requantify --filter_decoys
```

A list of all possible arguments is displayed using the help argument:
```shell
python -m simsi_transfer --help
```

## Installation

SIMSI-Transfer is available on PyPI and can be installed with `pip`:

```shell
pip install simsi-transfer
```

Alternatively, you can install SIMSI-Transfer after cloning from this repository:

```shell
git clone https://github.com/kusterlab/SIMSI-Transfer.git
pip install .
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kusterlab/SIMSI-Transfer",
    "name": "simsi-transfer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": "mass spectrometry, missing values, clustering, proteomics, quantification",
    "author": "Firas Hamood",
    "author_email": "firas.hamood@tum.de",
    "download_url": null,
    "platform": null,
    "description": "# SIMSI-Transfer\n\n[![PyPI version](https://img.shields.io/pypi/v/simsi_transfer.svg?logo=pypi&logoColor=FFE873)](https://pypi.org/project/simsi_transfer/)\n[![Supported Python versions](https://img.shields.io/pypi/pyversions/simsi_transfer.svg?logo=python&logoColor=FFE873)](https://pypi.org/project/simsi_transfer/)\n[![PyPI downloads](https://img.shields.io/pypi/dm/simsi_transfer.svg)](https://pypistats.org/packages/simsi_transfer)\n\nTransferring identifications using MS2 spectrum clustering with MaxQuant search results.\n\nHamood, F., Bayer, F. P., Wilhelm, M., Kuster, B., & The, M. (2022). _[SIMSI-Transfer: Software-assisted reduction of missing values in phosphoproteomic and proteomic isobaric labeling data using tandem mass spectrum clustering.](https://www.sciencedirect.com/science/article/pii/S1535947622000469)_ Molecular & Cellular Proteomics, 100238.\n\n## Test dataset\n\nFor testing SIMSI-Transfer after installation, we recommend downloading the TMT11 MS2 raw files from this publication:\nThompson, A., W\u00f6lmer, N., Koncarevic, S., Selzer, S. et al., _[TMTpro: Design, Synthesis, and Initial Evaluation of a Proline-Based Isobaric 16-Plex Tandem Mass Tag Reagent Set.](https://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b04474)_ Analytical Chemistry 2019, 91, 15941\u201315950. doi:10.1021/acs.analchem.9b04474\n\nPRIDE link: https://www.ebi.ac.uk/pride/archive/projects/PXD014750\n\nRaw files for TMT-MS2:\n- 19070-001.raw\n- 19070-002.raw\n- 19070-003.raw\n- 19070-006.raw\n- 19070-007.raw\n- 19070-008.raw\n\nThe MaxQuant results needed as input to SIMSI-Transfer can be downloaded from Zenodo: \n- [10.5281/zenodo.6365902](https://zenodo.org/record/6365902)\n\nFor reference, the original SIMSI-Transfer results (v0.1.0) for this dataset can also be downloaded from Zenodo:\n- [10.5281/zenodo.6365638](https://zenodo.org/record/6365638)\n\n## Running SIMSI-Transfer using the GUI\n\nOn Windows, you can download the `SIMSI-Transfer_GUI_windows.zip` from the latest release, unzip it and open `SIMSI-Transfer.exe` to start the GUI (no installation necessary).\n\nAlternatively, on all platforms, first install SIMSI-Transfer as explained below. Then install `PyQt5` (`pip install PyQt5`) and run:\n\n```shell\npython gui.py\n```\n\n## Running SIMSI-Transfer from the command line\n\nFirst install SIMSI-Transfer **as explained below**, then run SIMSI-Transfer:\n\n```shell\npython -m simsi_transfer --mq_txt_folder </path/to/txt/folder> --raw_folder </path/to/raw/folder> --output_folder </path/to/output/folder>\n```\n\nAlternative command for MS3 acquisition, using the TMT correction factor file exported from MaxQuant:\n\n```shell\npython -m simsi_transfer --mq_txt_folder </path/to/txt/folder> --raw_folder </path/to/raw/folder> --output_folder </path/to/output/folder> --tmt_ms_level ms3 --tmt_requantify --tmt_reporter_correction_file </path/to/correction/factor/file.txt>\n```\n\nAlternative command using the meta input file for MS3 acquisition, with filtered decoys:\n\n```shell\npython -m simsi_transfer --meta_input_file </path/to/meta/file> --output_folder </path/to/output/folder> --tmt_ms_level ms3 --tmt_requantify --filter_decoys\n```\n\nA list of all possible arguments is displayed using the help argument:\n```shell\npython -m simsi_transfer --help\n```\n\n## Installation\n\nSIMSI-Transfer is available on PyPI and can be installed with `pip`:\n\n```shell\npip install simsi-transfer\n```\n\nAlternatively, you can install SIMSI-Transfer after cloning from this repository:\n\n```shell\ngit clone https://github.com/kusterlab/SIMSI-Transfer.git\npip install .\n```\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Software-assisted reduction of missing values in phosphoproteomics and proteomics isobaric labeling data using MS2 spectrum clustering",
    "version": "0.6.1",
    "project_urls": {
        "Homepage": "https://github.com/kusterlab/SIMSI-Transfer",
        "Repository": "https://github.com/kusterlab/SIMSI-Transfer"
    },
    "split_keywords": [
        "mass spectrometry",
        " missing values",
        " clustering",
        " proteomics",
        " quantification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7c677770baf04594e95952f876c7c798a20c1d22b1ece30afa864f0a2459c6c5",
                "md5": "89ec15d359eed447550f903dbf807260",
                "sha256": "7cb38458b505c2141629854449bf52f91c9724069fc18eed72ec23a5192f2436"
            },
            "downloads": -1,
            "filename": "simsi_transfer-0.6.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "89ec15d359eed447550f903dbf807260",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 7752845,
            "upload_time": "2024-04-05T10:44:13",
            "upload_time_iso_8601": "2024-04-05T10:44:13.102010Z",
            "url": "https://files.pythonhosted.org/packages/7c/67/7770baf04594e95952f876c7c798a20c1d22b1ece30afa864f0a2459c6c5/simsi_transfer-0.6.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-05 10:44:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kusterlab",
    "github_project": "SIMSI-Transfer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "simsi-transfer"
}
        
Elapsed time: 2.51435s