sirms


Namesirms JSON
Version 1.2.4 PyPI version JSON
download
home_pagehttps://github.com/DrrDom/sirms
SummarySiRMS: simplex representation of molecular structure
upload_time2023-04-13 09:20:13
maintainer
docs_urlNone
authorPavel Polishchuk
requires_python>=3.6
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SiRMS

Simplex representation of molecular structure - a chemoinformatic tool for calculation of simplex (fragment) descriptors

#### Background

Simplex - tetraatomic fragment with fixed topology and stereo configuration.
Simplex descriptor - number of identical simplexes in a molecule.
From the version 1.0.0 fragments of any size are supported (not only simplexes).

#### Features

1. Calculate descriptors for single compounds, mixtures, quasi-mixtures and reactions (all-in-one tool).
2. Support incorporation of user-defined atomic properties (e.g. partial charges, H-bond donor/acceptor, etc) in generated descriptors.
3. Work well in QSAR/QSPR modeling tasks.

#### Limitations

This version calculates only 2D descriptors.

#### Installation

`pip install sirms`

#### Usage
Returns 2D simplex descriptors with vertexes labeled by element for single compounds  
`sirms -in input.sdf -o output.txt`  
Returns 2D simplex descriptors with vertexes labeled by element for reactions  
`sirms -in input.rdf -o output.txt`  

#### Help

`sirms -h`

#### Wiki

See wiki pages for more information and examples - https://github.com/DrrDom/sirms/wiki.

#### Notes

Standardize structures before descriptors calculation.

#### License

BSD 3-clause

#### Reference

1. Kuz’min, V. E.; Artemenko, A. G.; Polischuk, P. G.; Muratov, E. N.; Khromov, A. I.; Liahovskiy, A. V.; Andronati, S. A.; Makan, S. Y. Hierarchic System of QSAR Models (1D-4D) on the Base of Simplex Representation of Molecular Structure - Journal of Molecular Modelling, 2005, 11, 457-467. (**one of the first descriptions of single compounds representation**)
2. Kuz’min, V. E.; Artemenko, A. G.; Muratov, E. N. Hierarchical QSAR technology based on the Simplex representation of molecular structure - Journal of Computer-Aided Molecular Design, 2008, Volume 22, Issue 6-7, 403-421. (**single compounds representation**)
3. Oprisiu, I.; Varlamova, E.; Muratov, E.; Artemenko, A.; Marcou, G.; Polishchuk, P.; Kuz'min, V.; Varnek, A. QSPR Approach to Predict Nonadditive Properties of Mixtures. Application to Bubble Point Temperatures of Binary Mixtures of Liquids. Molecular Informatics 2012, 31, 491-502. (**old approach of mixtures representation**)
4. Mokshyna, E.; Nedostup, V. I.; Polischuk, P. G.; Kuzmin, V. E. ‘Quasi-Mixture’ Descriptors for QSPR Analysis of Molecular Macroscopic Properties. The Critical Properties of Organic Compounds. Molecular Informatics 2014, 33, 647-654. (**quasi-mixture representation**)
5. Polishchuk, P.; Madzhidov, T.; Gimadiev, T.; Bodrov, A.; Nugmanov, R.; Varnek, A. Structure–reactivity modeling using mixture-based representation of chemical reactions. J Comput Aided Mol Des 2017, 31 (9), 829-839 (**reaction representation & new mixture representation**).

#### Changes

version 1.1.0 (26.07.2016)
1) New canonicalization algorithm was implemented that changed descriptors names (break compatibility with older versions)

version 1.1.1 (20.02.2017)
- multiprocessing calculation of descriptors was implemented for single molecules and svm output format only (sparse format)
- per atom fragmentation was added

version 1.2.0 (06.02.2021)
- reorganized as a Python package

version 1.2.1 (08.02.2021)
- fix README formatting

version 1.2.2 (12.04.2023)
- fix examples in README

version 1.2.4 (13.04.2023)
- fix import calc_atomic_properties_chemaxon



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DrrDom/sirms",
    "name": "sirms",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "",
    "author": "Pavel Polishchuk",
    "author_email": "pavel_polishchuk@ukr.net",
    "download_url": "https://files.pythonhosted.org/packages/85/2f/1511a002047c4c38bb11b0b4a10e1e81abdb068a930f60823976f3a3a446/sirms-1.2.4.tar.gz",
    "platform": null,
    "description": "# SiRMS\n\nSimplex representation of molecular structure - a chemoinformatic tool for calculation of simplex (fragment) descriptors\n\n#### Background\n\nSimplex - tetraatomic fragment with fixed topology and stereo configuration.\nSimplex descriptor - number of identical simplexes in a molecule.\nFrom the version 1.0.0 fragments of any size are supported (not only simplexes).\n\n#### Features\n\n1. Calculate descriptors for single compounds, mixtures, quasi-mixtures and reactions (all-in-one tool).\n2. Support incorporation of user-defined atomic properties (e.g. partial charges, H-bond donor/acceptor, etc) in generated descriptors.\n3. Work well in QSAR/QSPR modeling tasks.\n\n#### Limitations\n\nThis version calculates only 2D descriptors.\n\n#### Installation\n\n`pip install sirms`\n\n#### Usage\nReturns 2D simplex descriptors with vertexes labeled by element for single compounds  \n`sirms -in input.sdf -o output.txt`  \nReturns 2D simplex descriptors with vertexes labeled by element for reactions  \n`sirms -in input.rdf -o output.txt`  \n\n#### Help\n\n`sirms -h`\n\n#### Wiki\n\nSee wiki pages for more information and examples - https://github.com/DrrDom/sirms/wiki.\n\n#### Notes\n\nStandardize structures before descriptors calculation.\n\n#### License\n\nBSD 3-clause\n\n#### Reference\n\n1. Kuz\u2019min, V. E.; Artemenko, A. G.; Polischuk, P. G.; Muratov, E. N.; Khromov, A. I.; Liahovskiy, A. V.; Andronati, S. A.; Makan, S. Y. Hierarchic System of QSAR Models (1D-4D) on the Base of Simplex Representation of Molecular Structure - Journal of Molecular Modelling, 2005, 11, 457-467. (**one of the first descriptions of single compounds representation**)\n2. Kuz\u2019min, V. E.; Artemenko, A. G.; Muratov, E. N. Hierarchical QSAR technology based on the Simplex representation of molecular structure - Journal of Computer-Aided Molecular Design, 2008, Volume 22, Issue 6-7, 403-421. (**single compounds representation**)\n3. Oprisiu, I.; Varlamova, E.; Muratov, E.; Artemenko, A.; Marcou, G.; Polishchuk, P.; Kuz'min, V.; Varnek, A. QSPR Approach to Predict Nonadditive Properties of Mixtures. Application to Bubble Point Temperatures of Binary Mixtures of Liquids. Molecular Informatics 2012, 31, 491-502. (**old approach of mixtures representation**)\n4. Mokshyna, E.; Nedostup, V. I.; Polischuk, P. G.; Kuzmin, V. E. \u2018Quasi-Mixture\u2019 Descriptors for QSPR Analysis of Molecular Macroscopic Properties. The Critical Properties of Organic Compounds. Molecular Informatics 2014, 33, 647-654. (**quasi-mixture representation**)\n5. Polishchuk, P.; Madzhidov, T.; Gimadiev, T.; Bodrov, A.; Nugmanov, R.; Varnek, A. Structure\u2013reactivity modeling using mixture-based representation of chemical reactions. J Comput Aided Mol Des 2017, 31 (9), 829-839 (**reaction representation & new mixture representation**).\n\n#### Changes\n\nversion 1.1.0 (26.07.2016)\n1) New canonicalization algorithm was implemented that changed descriptors names (break compatibility with older versions)\n\nversion 1.1.1 (20.02.2017)\n- multiprocessing calculation of descriptors was implemented for single molecules and svm output format only (sparse format)\n- per atom fragmentation was added\n\nversion 1.2.0 (06.02.2021)\n- reorganized as a Python package\n\nversion 1.2.1 (08.02.2021)\n- fix README formatting\n\nversion 1.2.2 (12.04.2023)\n- fix examples in README\n\nversion 1.2.4 (13.04.2023)\n- fix import calc_atomic_properties_chemaxon\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "SiRMS: simplex representation of molecular structure",
    "version": "1.2.4",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "619b05bbdc48f9ce841d58396de073faa6ad05d1b643bd824c0e5069f3f3c19b",
                "md5": "5db40ec6bc24cdbbe8ae9f541cf01cdd",
                "sha256": "d51d223e32770dafa6cb878fe1de4d196b97e81575e6b9ac3fea0975d0158c44"
            },
            "downloads": -1,
            "filename": "sirms-1.2.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5db40ec6bc24cdbbe8ae9f541cf01cdd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 29880,
            "upload_time": "2023-04-13T09:20:11",
            "upload_time_iso_8601": "2023-04-13T09:20:11.135969Z",
            "url": "https://files.pythonhosted.org/packages/61/9b/05bbdc48f9ce841d58396de073faa6ad05d1b643bd824c0e5069f3f3c19b/sirms-1.2.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "852f1511a002047c4c38bb11b0b4a10e1e81abdb068a930f60823976f3a3a446",
                "md5": "3d5d53490f5674b74b55f3a6bc973e9d",
                "sha256": "9af5302ebd3b8c6136566d9754ef196801298e20f3021559691770e6102033d9"
            },
            "downloads": -1,
            "filename": "sirms-1.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "3d5d53490f5674b74b55f3a6bc973e9d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 26693,
            "upload_time": "2023-04-13T09:20:13",
            "upload_time_iso_8601": "2023-04-13T09:20:13.099294Z",
            "url": "https://files.pythonhosted.org/packages/85/2f/1511a002047c4c38bb11b0b4a10e1e81abdb068a930f60823976f3a3a446/sirms-1.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-13 09:20:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "DrrDom",
    "github_project": "sirms",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "sirms"
}
        
Elapsed time: 0.06167s