skchange


Nameskchange JSON
Version 0.8.1 PyPI version JSON
download
home_pageNone
SummarySktime-compatible change and anomaly detection
upload_time2024-10-17 07:37:45
maintainerNone
docs_urlNone
authorNone
requires_python<3.13,>=3.9
licenseNone
keywords data-science machine-learning statistics scikit-learn time-series change-detection anomaly-detection
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # [skchange](https://skchange.readthedocs.io/en/latest/)

[![codecov](https://codecov.io/gh/NorskRegnesentral/skchange/graph/badge.svg?token=QSS3AY45KY)](https://codecov.io/gh/NorskRegnesentral/skchange)
[![tests](https://github.com/NorskRegnesentral/skchange/actions/workflows/tests.yaml/badge.svg)](https://github.com/NorskRegnesentral/skchange/actions/workflows/tests.yaml)
[![docs](https://readthedocs.org/projects/skchange/badge/?version=latest)](https://skchange.readthedocs.io/en/latest/?badge=latest)
[![BSD 3-clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://github.com/sktime/sktime/blob/main/LICENSE)
[![!black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

`skchange` provides sktime-compatible change detection and changepoint-based anomaly detection algorithms.

Experimental but maturing.

## [Documentation](https://skchange.readthedocs.io/en/latest/)
Now available.


## Installation
```sh
pip install skchange
```
Requires Python >= 3.9, < 3.13.

## Quickstart

### Changepoint detection / time series segmentation
```python
from skchange.change_detectors.moscore import Moscore
from skchange.datasets.generate import generate_alternating_data

df = generate_alternating_data(n_segments=10, segment_length=50, mean=5, random_state=1)

detector = Moscore(bandwidth=10)
detector.fit_predict(df)
```
```python
0     49
1     99
2    149
3    199
4    249
5    299
6    349
7    399
8    449
Name: changepoint, dtype: int64
```

### Multivariate anomaly detection
```python
import numpy as np
from skchange.anomaly_detectors import Mvcapa
from skchange.datasets.generate import generate_anomalous_data

n = 300
anomalies = [(100, 119), (250, 299)]
means = [[8.0, 0.0, 0.0], [2.0, 3.0, 5.0]]
df = generate_anomalous_data(n, anomalies, means, random_state=3)

detector = Mvcapa()
detector.fit_predict(df)
```
```python
  anomaly_interval anomaly_columns
0       [100, 119]             [0]
1       [250, 299]       [2, 1, 0]
```


<!-- Optional dependencies:
- Penalty tuning: `optuna` >= 3.1.1
- Plotting: `plotly` >= 5.13.0. -->


## License

`skchange` is a free and open-source software licensed under the [BSD 3-clause license](https://github.com/NorskRegnesentral/skchange/blob/main/LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "skchange",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.9",
    "maintainer_email": "Martin Tveten <tveten@nr.no>, Johannes Voll Kolst\u00f8 <jvkolsto@nr.no>",
    "keywords": "data-science, machine-learning, statistics, scikit-learn, time-series, change-detection, anomaly-detection",
    "author": null,
    "author_email": "Martin Tveten <tveten@nr.no>",
    "download_url": "https://files.pythonhosted.org/packages/9d/c8/41b8f6ac7888ff5837ef7d5ba84db22e4222d4090a228e1e8af16d7e72f7/skchange-0.8.1.tar.gz",
    "platform": null,
    "description": "# [skchange](https://skchange.readthedocs.io/en/latest/)\r\n\r\n[![codecov](https://codecov.io/gh/NorskRegnesentral/skchange/graph/badge.svg?token=QSS3AY45KY)](https://codecov.io/gh/NorskRegnesentral/skchange)\r\n[![tests](https://github.com/NorskRegnesentral/skchange/actions/workflows/tests.yaml/badge.svg)](https://github.com/NorskRegnesentral/skchange/actions/workflows/tests.yaml)\r\n[![docs](https://readthedocs.org/projects/skchange/badge/?version=latest)](https://skchange.readthedocs.io/en/latest/?badge=latest)\r\n[![BSD 3-clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://github.com/sktime/sktime/blob/main/LICENSE)\r\n[![!black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\r\n\r\n`skchange` provides sktime-compatible change detection and changepoint-based anomaly detection algorithms.\r\n\r\nExperimental but maturing.\r\n\r\n## [Documentation](https://skchange.readthedocs.io/en/latest/)\r\nNow available.\r\n\r\n\r\n## Installation\r\n```sh\r\npip install skchange\r\n```\r\nRequires Python >= 3.9, < 3.13.\r\n\r\n## Quickstart\r\n\r\n### Changepoint detection / time series segmentation\r\n```python\r\nfrom skchange.change_detectors.moscore import Moscore\r\nfrom skchange.datasets.generate import generate_alternating_data\r\n\r\ndf = generate_alternating_data(n_segments=10, segment_length=50, mean=5, random_state=1)\r\n\r\ndetector = Moscore(bandwidth=10)\r\ndetector.fit_predict(df)\r\n```\r\n```python\r\n0     49\r\n1     99\r\n2    149\r\n3    199\r\n4    249\r\n5    299\r\n6    349\r\n7    399\r\n8    449\r\nName: changepoint, dtype: int64\r\n```\r\n\r\n### Multivariate anomaly detection\r\n```python\r\nimport numpy as np\r\nfrom skchange.anomaly_detectors import Mvcapa\r\nfrom skchange.datasets.generate import generate_anomalous_data\r\n\r\nn = 300\r\nanomalies = [(100, 119), (250, 299)]\r\nmeans = [[8.0, 0.0, 0.0], [2.0, 3.0, 5.0]]\r\ndf = generate_anomalous_data(n, anomalies, means, random_state=3)\r\n\r\ndetector = Mvcapa()\r\ndetector.fit_predict(df)\r\n```\r\n```python\r\n  anomaly_interval anomaly_columns\r\n0       [100, 119]             [0]\r\n1       [250, 299]       [2, 1, 0]\r\n```\r\n\r\n\r\n<!-- Optional dependencies:\r\n- Penalty tuning: `optuna` >= 3.1.1\r\n- Plotting: `plotly` >= 5.13.0. -->\r\n\r\n\r\n## License\r\n\r\n`skchange` is a free and open-source software licensed under the [BSD 3-clause license](https://github.com/NorskRegnesentral/skchange/blob/main/LICENSE).\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Sktime-compatible change and anomaly detection",
    "version": "0.8.1",
    "project_urls": {
        "Homepage": "https://github.com/NorskRegnesentral/skchange"
    },
    "split_keywords": [
        "data-science",
        " machine-learning",
        " statistics",
        " scikit-learn",
        " time-series",
        " change-detection",
        " anomaly-detection"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b7a689dcc4942d0268bcc717dc751ce75e6115ba1151a45cc7fd85262e6af64a",
                "md5": "ccd050db2e58687b1b451b660765341c",
                "sha256": "f089bc3d450fa32afd6b7a0e1d6323f6cc8d56b61bbd0827f00a31533eb79811"
            },
            "downloads": -1,
            "filename": "skchange-0.8.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ccd050db2e58687b1b451b660765341c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.9",
            "size": 4294550,
            "upload_time": "2024-10-17T07:37:43",
            "upload_time_iso_8601": "2024-10-17T07:37:43.022573Z",
            "url": "https://files.pythonhosted.org/packages/b7/a6/89dcc4942d0268bcc717dc751ce75e6115ba1151a45cc7fd85262e6af64a/skchange-0.8.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9dc841b8f6ac7888ff5837ef7d5ba84db22e4222d4090a228e1e8af16d7e72f7",
                "md5": "15bbdb453fde91ab9de421704646344e",
                "sha256": "791d1d66a4ab627991f5ff885de0e9b344a9d6cc12db53f590871b0d4bffad78"
            },
            "downloads": -1,
            "filename": "skchange-0.8.1.tar.gz",
            "has_sig": false,
            "md5_digest": "15bbdb453fde91ab9de421704646344e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.9",
            "size": 3916602,
            "upload_time": "2024-10-17T07:37:45",
            "upload_time_iso_8601": "2024-10-17T07:37:45.440573Z",
            "url": "https://files.pythonhosted.org/packages/9d/c8/41b8f6ac7888ff5837ef7d5ba84db22e4222d4090a228e1e8af16d7e72f7/skchange-0.8.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-17 07:37:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NorskRegnesentral",
    "github_project": "skchange",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "skchange"
}
        
Elapsed time: 0.37884s