skcv-toolkit


Nameskcv-toolkit JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummarySanthosh Kumar Computer Vision Toolkit - A comprehensive computer vision toolkit for image processing and analysis
upload_time2025-08-07 15:32:21
maintainerNone
docs_urlNone
authorSanthosh Kumar
requires_python>=3.7
licenseMIT
keywords computer vision image processing opencv numpy scikit-image
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SKCV-Toolkit - Santhosh Kumar Computer Vision Toolkit

A comprehensive computer vision toolkit for image processing and analysis.

## Features

- **Histogram Equalization**: Various equalization methods for image enhancement
- **Filter Operations**: High-pass and low-pass filters for image processing
- **Neighborhood Operations**: Custom filters and neighborhood analysis
- **GUI Tools**: Interactive tools for image processing

## Installation

```bash
pip install skcv-toolkit
```

## Usage

```python
import skcv

# Use histogram equalization
from skcv.he.methods import equalizers

# Use filters
from skcv.hplp.filters import filters

# Use neighborhood operations
from skcv.neigh import custom_gui_filter
```

## Requirements

- Python 3.7+
- NumPy
- OpenCV
- Matplotlib
- Pillow
- scikit-image

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "skcv-toolkit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "computer vision, image processing, opencv, numpy, scikit-image",
    "author": "Santhosh Kumar",
    "author_email": "Santhosh Kumar <santhoshkumarsampath.off@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/03/1d/8381f9110f2e2ed2237f762f30b452de5797bb6cf7d9cbd8bb86a4a85471/skcv_toolkit-0.1.0.tar.gz",
    "platform": null,
    "description": "# SKCV-Toolkit - Santhosh Kumar Computer Vision Toolkit\r\n\r\nA comprehensive computer vision toolkit for image processing and analysis.\r\n\r\n## Features\r\n\r\n- **Histogram Equalization**: Various equalization methods for image enhancement\r\n- **Filter Operations**: High-pass and low-pass filters for image processing\r\n- **Neighborhood Operations**: Custom filters and neighborhood analysis\r\n- **GUI Tools**: Interactive tools for image processing\r\n\r\n## Installation\r\n\r\n```bash\r\npip install skcv-toolkit\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nimport skcv\r\n\r\n# Use histogram equalization\r\nfrom skcv.he.methods import equalizers\r\n\r\n# Use filters\r\nfrom skcv.hplp.filters import filters\r\n\r\n# Use neighborhood operations\r\nfrom skcv.neigh import custom_gui_filter\r\n```\r\n\r\n## Requirements\r\n\r\n- Python 3.7+\r\n- NumPy\r\n- OpenCV\r\n- Matplotlib\r\n- Pillow\r\n- scikit-image\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Santhosh Kumar Computer Vision Toolkit - A comprehensive computer vision toolkit for image processing and analysis",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [
        "computer vision",
        " image processing",
        " opencv",
        " numpy",
        " scikit-image"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b948b5e61aafb9589affe9d4860ebbd3657c06b104e7197870bcfd6f3ddb35bd",
                "md5": "fa94ce4e91f7c7bd884a11f7ac7dbe60",
                "sha256": "d04f2eca480a6f34ea4b81cfc1f660ec63233607009b498e98f256ad66c6de90"
            },
            "downloads": -1,
            "filename": "skcv_toolkit-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fa94ce4e91f7c7bd884a11f7ac7dbe60",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 4038,
            "upload_time": "2025-08-07T15:32:20",
            "upload_time_iso_8601": "2025-08-07T15:32:20.509742Z",
            "url": "https://files.pythonhosted.org/packages/b9/48/b5e61aafb9589affe9d4860ebbd3657c06b104e7197870bcfd6f3ddb35bd/skcv_toolkit-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "031d8381f9110f2e2ed2237f762f30b452de5797bb6cf7d9cbd8bb86a4a85471",
                "md5": "43df2510bc5589bce5cfd4da95851635",
                "sha256": "a978cbec57a8ac1c5442691c84bd63d3187f4f0d60e36b861981e0c3fd9571c5"
            },
            "downloads": -1,
            "filename": "skcv_toolkit-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "43df2510bc5589bce5cfd4da95851635",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 3915,
            "upload_time": "2025-08-07T15:32:21",
            "upload_time_iso_8601": "2025-08-07T15:32:21.768941Z",
            "url": "https://files.pythonhosted.org/packages/03/1d/8381f9110f2e2ed2237f762f30b452de5797bb6cf7d9cbd8bb86a4a85471/skcv_toolkit-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-07 15:32:21",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "skcv-toolkit"
}
        
Elapsed time: 2.84658s