skpro


Nameskpro JSON
Version 2.8.0 PyPI version JSON
download
home_pageNone
SummaryA unified framework for tabular probabilistic regression, time-to-event prediction, and probability distributions in python
upload_time2024-11-17 17:15:55
maintainerNone
docs_urlNone
authorFranz Király, Frithjof Gressmann, Vitaly Davydov
requires_python<3.14,>=3.9
licenseNone
keywords data-science machine-learning data-mining time-series scikit-learn regression
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            <a href="https://skpro.readthedocs.io/en/latest"><img src="https://github.com/sktime/skpro/blob/main/docs/source/images/skpro-banner.png" width="500" align="right" /></a>

:rocket: **Version 2.8.0 out now!** [Read the release notes here.](https://skpro.readthedocs.io/en/latest/changelog.html).

`skpro` is a library for supervised probabilistic prediction in python.
It provides `scikit-learn`-like, `scikit-base` compatible interfaces to:

* tabular **supervised regressors for probabilistic prediction** - interval, quantile and distribution predictions
* tabular **probabilistic time-to-event and survival prediction** - instance-individual survival distributions
* **metrics to evaluate probabilistic predictions**, e.g., pinball loss, empirical coverage, CRPS, survival losses
* **reductions** to turn `scikit-learn` regressors into probabilistic `skpro` regressors, such as bootstrap or conformal
* building **pipelines and composite models**, including tuning via probabilistic performance metrics
* symbolic **probability distributions** with value domain of `pandas.DataFrame`-s and `pandas`-like interface

| Overview | |
|---|---|
| **Open Source** |  [![BSD 3-clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://github.com/sktime/sktime/blob/main/LICENSE) |
| **Tutorials** | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/sktime/skpro/main?filepath=examples) [![!youtube](https://img.shields.io/static/v1?logo=youtube&label=YouTube&message=tutorials&color=red)](https://www.youtube.com/playlist?list=PLKs3UgGjlWHqNzu0LEOeLKvnjvvest2d0) |
| **Community** | [![!discord](https://img.shields.io/static/v1?logo=discord&label=discord&message=chat&color=lightgreen)](https://discord.com/invite/54ACzaFsn7) [![!slack](https://img.shields.io/static/v1?logo=linkedin&label=LinkedIn&message=news&color=lightblue)](https://www.linkedin.com/company/scikit-time/) |
| **CI/CD** | [![github-actions](https://img.shields.io/github/actions/workflow/status/sktime/sktime/wheels.yml?logo=github)](https://github.com/sktime/skpro/actions/workflows/wheels.yml) [![!codecov](https://img.shields.io/codecov/c/github/sktime/skpro?label=codecov&logo=codecov)](https://codecov.io/gh/sktime/skpro) [![readthedocs](https://img.shields.io/readthedocs/skpro?logo=readthedocs)](https://skpro.readthedocs.io/en/latest/) [![platform](https://img.shields.io/conda/pn/conda-forge/skpro)](https://github.com/sktime/skpro) |
| **Code** |  [![!pypi](https://img.shields.io/pypi/v/skpro?color=orange)](https://pypi.org/project/skpro/) [![!conda](https://img.shields.io/conda/vn/conda-forge/skpro)](https://anaconda.org/conda-forge/skpro) [![!python-versions](https://img.shields.io/pypi/pyversions/skpro)](https://www.python.org/) [![!black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) |
| **Downloads** | ![PyPI - Downloads](https://img.shields.io/pypi/dw/skpro) ![PyPI - Downloads](https://img.shields.io/pypi/dm/skpro) [![Downloads](https://static.pepy.tech/personalized-badge/skpro?period=total&units=international_system&left_color=grey&right_color=blue&left_text=cumulative%20(pypi))](https://pepy.tech/project/skpro) |
| **Citation** | [![DOI](https://zenodo.org/badge/103107372.svg)](https://zenodo.org/doi/10.5281/zenodo.11002671) |

## :books: Documentation

| Documentation              |                                                                |
| -------------------------- | -------------------------------------------------------------- |
| :star: **[Tutorials]**        | New to skpro? Here's everything you need to know!              |
| :clipboard: **[Binder Notebooks]** | Example notebooks to play with in your browser.              |
| :woman_technologist: **[User Guides]**      | How to use skpro and its features.                             |
| :scissors: **[Extension Templates]** | How to build your own estimator using skpro's API.            |
| :control_knobs: **[API Reference]**      | The detailed reference for skpro's API.                        |
| :hammer_and_wrench: **[Changelog]**          | Changes and version history.                                   |
| :deciduous_tree: **[Roadmap]**          | skpro's software and community development plan.                                   |
| :pencil: **[Related Software]**          | A list of related software. |

[tutorials]: https://skpro.readthedocs.io/en/latest/tutorials.html
[binder notebooks]: https://mybinder.org/v2/gh/sktime/skpro/main?filepath=examples
[user guides]: https://skpro.readthedocs.io/en/latest/user_guide.html
[extension templates]: https://github.com/sktime/skpro/tree/main/extension_templates
[api reference]: https://skpro.readthedocs.io/en/latest/api_reference.html
[changelog]: https://skpro.readthedocs.io/en/latest/changelog.html
[roadmap]: https://skpro.readthedocs.io/en/latest/roadmap.html
[related software]: https://skpro.readthedocs.io/en/latest/related_software.html


## :speech_balloon: Where to ask questions

Questions and feedback are extremely welcome!
We strongly believe in the value of sharing help publicly, as it allows a wider audience to benefit from it.

`skpro` is maintained by the `sktime` community, we use the same social channels.

| Type                            | Platforms                               |
| ------------------------------- | --------------------------------------- |
| :bug: **Bug Reports**              | [GitHub Issue Tracker]                  |
| :sparkles: **Feature Requests & Ideas** | [GitHub Issue Tracker]                       |
| :woman_technologist: **Usage Questions**          | [GitHub Discussions] · [Stack Overflow] |
| :speech_balloon: **General Discussion**        | [GitHub Discussions] |
| :factory: **Contribution & Development** | `dev-chat` channel · [Discord] |
| :globe_with_meridians: **Community collaboration session** | [Discord] - Fridays 13 UTC, dev/meet-ups channel |

[github issue tracker]: https://github.com/sktime/skpro/issues
[github discussions]: https://github.com/sktime/skpro/discussions
[stack overflow]: https://stackoverflow.com/questions/tagged/sktime
[discord]: https://discord.com/invite/54ACzaFsn7


## :dizzy: Features

Our objective is to enhance the interoperability and usability of the AI model ecosystem:

* ``skpro`` is compatible with [scikit-learn] and [sktime], e.g., an ``sktime`` proba forecaster can
be built with an ``skpro`` proba regressor which in an ``sklearn`` regressor with proba mode added by ``skpro``

* ``skpro`` provides a mini-package management framework for first-party implementations,
and for interfacing popular second- and third-party components,
such as [cyclic-boosting], [MAPIE], or [ngboost] packages.

[scikit-learn]: https://scikit-learn.org/stable/
[sktime]: https://www.sktime.net
[MAPIE]: https://mapie.readthedocs.io/en/latest/
[cyclic-boosting]:  https://cyclic-boosting.readthedocs.io/en/latest/
[ngboost]: https://stanfordmlgroup.github.io/projects/ngboost/

``skpro`` curates libraries of components of the following types:

| Module | Status | Links |
|---|---|---|
| **[Probabilistic tabular regression]** | maturing | [Tutorial](https://github.com/sktime/skpro/blob/main/examples/01_skpro_intro.ipynb) · [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/regression.html) · [Extension Template](https://github.com/sktime/skpro/blob/main/extension_templates/regression.py) |
| **[Time-to-event (survival) prediction]** | maturing |  [Tutorial](https://github.com/sktime/skpro/blob/main/examples/02_skpro_survival.ipynb) · [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/survival.html) · [Extension Template](https://github.com/sktime/skpro/blob/main/extension_templates/survival.py) |
| **[Performance metrics]** | maturing | [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/metrics.html) |
| **[Probability distributions]** | maturing | [Tutorial](https://github.com/sktime/skpro/blob/main/examples/03_skpro_distributions.ipynb) · [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/distributions.html) · [Extension Template](https://github.com/sktime/skpro/blob/main/extension_templates/distributions.py) |

[Probabilistic tabular regression]: https://github.com/sktime/skpro/tree/main/skpro/regression
[Time-to-event (survival) prediction]: https://github.com/sktime/skpro/tree/main/skpro/survival
[Performance metrics]: https://github.com/sktime/skpro/tree/main/skpro/metrics
[Probability distributions]: https://github.com/sktime/skpro/tree/main/skpro/distributions


## :hourglass_flowing_sand: Installing `skpro`

To install `skpro`, use `pip`:

```bash
pip install skpro
```

or, with maximum dependencies,

```bash
pip install skpro[all_extras]
```

Releases are available as source packages and binary wheels. You can see all available wheels [here](https://pypi.org/simple/skpro/).

## :zap: Quickstart

### Making probabilistic predictions

``` python
from sklearn.datasets import load_diabetes
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

from skpro.regression.residual import ResidualDouble

# step 1: data specification
X, y = load_diabetes(return_X_y=True, as_frame=True)
X_train, X_new, y_train, _ = train_test_split(X, y)

# step 2: specifying the regressor - any compatible regressor is valid!
# example - "squaring residuals" regressor
# random forest for mean prediction
# linear regression for variance prediction
reg_mean = RandomForestRegressor()
reg_resid = LinearRegression()
reg_proba = ResidualDouble(reg_mean, reg_resid)

# step 3: fitting the model to training data
reg_proba.fit(X_train, y_train)

# step 4: predicting labels on new data

# probabilistic prediction modes - pick any or multiple

# full distribution prediction
y_pred_proba = reg_proba.predict_proba(X_new)

# interval prediction
y_pred_interval = reg_proba.predict_interval(X_new, coverage=0.9)

# quantile prediction
y_pred_quantiles = reg_proba.predict_quantiles(X_new, alpha=[0.05, 0.5, 0.95])

# variance prediction
y_pred_var = reg_proba.predict_var(X_new)

# mean prediction is same as "classical" sklearn predict, also available
y_pred_mean = reg_proba.predict(X_new)
```

### Evaluating predictions

``` python
# step 5: specifying evaluation metric
from skpro.metrics import CRPS

metric = CRPS()  # continuous rank probability score - any skpro metric works!

# step 6: evaluat metric, compare predictions to actuals
metric(y_test, y_pred_proba)
>>> 32.19
```

## :wave: How to get involved

There are many ways to get involved with development of `skpro`, which is
developed by the `sktime` community.
We follow the [all-contributors](https://github.com/all-contributors/all-contributors)
specification: all kinds of contributions are welcome - not just code.

| Documentation              |                                                                |
| -------------------------- | --------------------------------------------------------------        |
| :gift_heart: **[Contribute]**        | How to contribute to skpro.          |
| :school_satchel:  **[Mentoring]** | New to open source? Apply to our mentoring program! |
| :date: **[Meetings]** | Join our discussions, tutorials, workshops, and sprints! |
| :woman_mechanic:  **[Developer Guides]**      | How to further develop the skpro code base.                             |
| :medal_sports: **[Contributors]** | A list of all contributors. |
| :raising_hand: **[Roles]** | An overview of our core community roles. |
| :money_with_wings: **[Donate]** | Fund sktime and skpro maintenance and development. |
| :classical_building: **[Governance]** | How and by whom decisions are made in the sktime community.   |

[contribute]: https://skpro.readthedocs.io/en/latest/get_involved/contributing.html
[donate]: https://opencollective.com/sktime
[developer guides]: https://skpro.readthedocs.io/en/latest/developer_guide.html
[contributors]: https://github.com/sktime/skpro/blob/main/CONTRIBUTORS.md
[governance]: https://www.sktime.net/en/latest/get_involved/governance.html
[mentoring]: https://github.com/sktime/mentoring
[meetings]: https://calendar.google.com/calendar/u/0/embed?src=sktime.toolbox@gmail.com&ctz=UTC
[roles]: https://www.sktime.net/en/latest/about/team.html


## :wave: Citation

To cite `skpro` in a scientific publication, see [citations](CITATION.rst).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "skpro",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.9",
    "maintainer_email": "skpro developers <info@sktime.net>",
    "keywords": "data-science, machine-learning, data-mining, time-series, scikit-learn, regression",
    "author": "Franz Kir\u00e1ly, Frithjof Gressmann, Vitaly Davydov",
    "author_email": "skpro developers <info@sktime.net>",
    "download_url": "https://files.pythonhosted.org/packages/43/6b/c76748ce2499550fa5c2fde7337c0aad81bdeefe3897a9b37c71325dff75/skpro-2.8.0.tar.gz",
    "platform": null,
    "description": "<a href=\"https://skpro.readthedocs.io/en/latest\"><img src=\"https://github.com/sktime/skpro/blob/main/docs/source/images/skpro-banner.png\" width=\"500\" align=\"right\" /></a>\n\n:rocket: **Version 2.8.0 out now!** [Read the release notes here.](https://skpro.readthedocs.io/en/latest/changelog.html).\n\n`skpro` is a library for supervised probabilistic prediction in python.\nIt provides `scikit-learn`-like, `scikit-base` compatible interfaces to:\n\n* tabular **supervised regressors for probabilistic prediction** - interval, quantile and distribution predictions\n* tabular **probabilistic time-to-event and survival prediction** - instance-individual survival distributions\n* **metrics to evaluate probabilistic predictions**, e.g., pinball loss, empirical coverage, CRPS, survival losses\n* **reductions** to turn `scikit-learn` regressors into probabilistic `skpro` regressors, such as bootstrap or conformal\n* building **pipelines and composite models**, including tuning via probabilistic performance metrics\n* symbolic **probability distributions** with value domain of `pandas.DataFrame`-s and `pandas`-like interface\n\n| Overview | |\n|---|---|\n| **Open Source** |  [![BSD 3-clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://github.com/sktime/sktime/blob/main/LICENSE) |\n| **Tutorials** | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/sktime/skpro/main?filepath=examples) [![!youtube](https://img.shields.io/static/v1?logo=youtube&label=YouTube&message=tutorials&color=red)](https://www.youtube.com/playlist?list=PLKs3UgGjlWHqNzu0LEOeLKvnjvvest2d0) |\n| **Community** | [![!discord](https://img.shields.io/static/v1?logo=discord&label=discord&message=chat&color=lightgreen)](https://discord.com/invite/54ACzaFsn7) [![!slack](https://img.shields.io/static/v1?logo=linkedin&label=LinkedIn&message=news&color=lightblue)](https://www.linkedin.com/company/scikit-time/) |\n| **CI/CD** | [![github-actions](https://img.shields.io/github/actions/workflow/status/sktime/sktime/wheels.yml?logo=github)](https://github.com/sktime/skpro/actions/workflows/wheels.yml) [![!codecov](https://img.shields.io/codecov/c/github/sktime/skpro?label=codecov&logo=codecov)](https://codecov.io/gh/sktime/skpro) [![readthedocs](https://img.shields.io/readthedocs/skpro?logo=readthedocs)](https://skpro.readthedocs.io/en/latest/) [![platform](https://img.shields.io/conda/pn/conda-forge/skpro)](https://github.com/sktime/skpro) |\n| **Code** |  [![!pypi](https://img.shields.io/pypi/v/skpro?color=orange)](https://pypi.org/project/skpro/) [![!conda](https://img.shields.io/conda/vn/conda-forge/skpro)](https://anaconda.org/conda-forge/skpro) [![!python-versions](https://img.shields.io/pypi/pyversions/skpro)](https://www.python.org/) [![!black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) |\n| **Downloads** | ![PyPI - Downloads](https://img.shields.io/pypi/dw/skpro) ![PyPI - Downloads](https://img.shields.io/pypi/dm/skpro) [![Downloads](https://static.pepy.tech/personalized-badge/skpro?period=total&units=international_system&left_color=grey&right_color=blue&left_text=cumulative%20(pypi))](https://pepy.tech/project/skpro) |\n| **Citation** | [![DOI](https://zenodo.org/badge/103107372.svg)](https://zenodo.org/doi/10.5281/zenodo.11002671) |\n\n## :books: Documentation\n\n| Documentation              |                                                                |\n| -------------------------- | -------------------------------------------------------------- |\n| :star: **[Tutorials]**        | New to skpro? Here's everything you need to know!              |\n| :clipboard: **[Binder Notebooks]** | Example notebooks to play with in your browser.              |\n| :woman_technologist: **[User Guides]**      | How to use skpro and its features.                             |\n| :scissors: **[Extension Templates]** | How to build your own estimator using skpro's API.            |\n| :control_knobs: **[API Reference]**      | The detailed reference for skpro's API.                        |\n| :hammer_and_wrench: **[Changelog]**          | Changes and version history.                                   |\n| :deciduous_tree: **[Roadmap]**          | skpro's software and community development plan.                                   |\n| :pencil: **[Related Software]**          | A list of related software. |\n\n[tutorials]: https://skpro.readthedocs.io/en/latest/tutorials.html\n[binder notebooks]: https://mybinder.org/v2/gh/sktime/skpro/main?filepath=examples\n[user guides]: https://skpro.readthedocs.io/en/latest/user_guide.html\n[extension templates]: https://github.com/sktime/skpro/tree/main/extension_templates\n[api reference]: https://skpro.readthedocs.io/en/latest/api_reference.html\n[changelog]: https://skpro.readthedocs.io/en/latest/changelog.html\n[roadmap]: https://skpro.readthedocs.io/en/latest/roadmap.html\n[related software]: https://skpro.readthedocs.io/en/latest/related_software.html\n\n\n## :speech_balloon: Where to ask questions\n\nQuestions and feedback are extremely welcome!\nWe strongly believe in the value of sharing help publicly, as it allows a wider audience to benefit from it.\n\n`skpro` is maintained by the `sktime` community, we use the same social channels.\n\n| Type                            | Platforms                               |\n| ------------------------------- | --------------------------------------- |\n| :bug: **Bug Reports**              | [GitHub Issue Tracker]                  |\n| :sparkles: **Feature Requests & Ideas** | [GitHub Issue Tracker]                       |\n| :woman_technologist: **Usage Questions**          | [GitHub Discussions] \u00b7 [Stack Overflow] |\n| :speech_balloon: **General Discussion**        | [GitHub Discussions] |\n| :factory: **Contribution & Development** | `dev-chat` channel \u00b7 [Discord] |\n| :globe_with_meridians: **Community collaboration session** | [Discord] - Fridays 13 UTC, dev/meet-ups channel |\n\n[github issue tracker]: https://github.com/sktime/skpro/issues\n[github discussions]: https://github.com/sktime/skpro/discussions\n[stack overflow]: https://stackoverflow.com/questions/tagged/sktime\n[discord]: https://discord.com/invite/54ACzaFsn7\n\n\n## :dizzy: Features\n\nOur objective is to enhance the interoperability and usability of the AI model ecosystem:\n\n* ``skpro`` is compatible with [scikit-learn] and [sktime], e.g., an ``sktime`` proba forecaster can\nbe built with an ``skpro`` proba regressor which in an ``sklearn`` regressor with proba mode added by ``skpro``\n\n* ``skpro`` provides a mini-package management framework for first-party implementations,\nand for interfacing popular second- and third-party components,\nsuch as [cyclic-boosting], [MAPIE], or [ngboost] packages.\n\n[scikit-learn]: https://scikit-learn.org/stable/\n[sktime]: https://www.sktime.net\n[MAPIE]: https://mapie.readthedocs.io/en/latest/\n[cyclic-boosting]:  https://cyclic-boosting.readthedocs.io/en/latest/\n[ngboost]: https://stanfordmlgroup.github.io/projects/ngboost/\n\n``skpro`` curates libraries of components of the following types:\n\n| Module | Status | Links |\n|---|---|---|\n| **[Probabilistic tabular regression]** | maturing | [Tutorial](https://github.com/sktime/skpro/blob/main/examples/01_skpro_intro.ipynb) \u00b7 [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/regression.html) \u00b7 [Extension Template](https://github.com/sktime/skpro/blob/main/extension_templates/regression.py) |\n| **[Time-to-event (survival) prediction]** | maturing |  [Tutorial](https://github.com/sktime/skpro/blob/main/examples/02_skpro_survival.ipynb) \u00b7 [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/survival.html) \u00b7 [Extension Template](https://github.com/sktime/skpro/blob/main/extension_templates/survival.py) |\n| **[Performance metrics]** | maturing | [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/metrics.html) |\n| **[Probability distributions]** | maturing | [Tutorial](https://github.com/sktime/skpro/blob/main/examples/03_skpro_distributions.ipynb) \u00b7 [API Reference](https://skpro.readthedocs.io/en/latest/api_reference/distributions.html) \u00b7 [Extension Template](https://github.com/sktime/skpro/blob/main/extension_templates/distributions.py) |\n\n[Probabilistic tabular regression]: https://github.com/sktime/skpro/tree/main/skpro/regression\n[Time-to-event (survival) prediction]: https://github.com/sktime/skpro/tree/main/skpro/survival\n[Performance metrics]: https://github.com/sktime/skpro/tree/main/skpro/metrics\n[Probability distributions]: https://github.com/sktime/skpro/tree/main/skpro/distributions\n\n\n## :hourglass_flowing_sand: Installing `skpro`\n\nTo install `skpro`, use `pip`:\n\n```bash\npip install skpro\n```\n\nor, with maximum dependencies,\n\n```bash\npip install skpro[all_extras]\n```\n\nReleases are available as source packages and binary wheels. You can see all available wheels [here](https://pypi.org/simple/skpro/).\n\n## :zap: Quickstart\n\n### Making probabilistic predictions\n\n``` python\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.ensemble import RandomForestRegressor\nfrom sklearn.linear_model import LinearRegression\nfrom sklearn.model_selection import train_test_split\n\nfrom skpro.regression.residual import ResidualDouble\n\n# step 1: data specification\nX, y = load_diabetes(return_X_y=True, as_frame=True)\nX_train, X_new, y_train, _ = train_test_split(X, y)\n\n# step 2: specifying the regressor - any compatible regressor is valid!\n# example - \"squaring residuals\" regressor\n# random forest for mean prediction\n# linear regression for variance prediction\nreg_mean = RandomForestRegressor()\nreg_resid = LinearRegression()\nreg_proba = ResidualDouble(reg_mean, reg_resid)\n\n# step 3: fitting the model to training data\nreg_proba.fit(X_train, y_train)\n\n# step 4: predicting labels on new data\n\n# probabilistic prediction modes - pick any or multiple\n\n# full distribution prediction\ny_pred_proba = reg_proba.predict_proba(X_new)\n\n# interval prediction\ny_pred_interval = reg_proba.predict_interval(X_new, coverage=0.9)\n\n# quantile prediction\ny_pred_quantiles = reg_proba.predict_quantiles(X_new, alpha=[0.05, 0.5, 0.95])\n\n# variance prediction\ny_pred_var = reg_proba.predict_var(X_new)\n\n# mean prediction is same as \"classical\" sklearn predict, also available\ny_pred_mean = reg_proba.predict(X_new)\n```\n\n### Evaluating predictions\n\n``` python\n# step 5: specifying evaluation metric\nfrom skpro.metrics import CRPS\n\nmetric = CRPS()  # continuous rank probability score - any skpro metric works!\n\n# step 6: evaluat metric, compare predictions to actuals\nmetric(y_test, y_pred_proba)\n>>> 32.19\n```\n\n## :wave: How to get involved\n\nThere are many ways to get involved with development of `skpro`, which is\ndeveloped by the `sktime` community.\nWe follow the [all-contributors](https://github.com/all-contributors/all-contributors)\nspecification: all kinds of contributions are welcome - not just code.\n\n| Documentation              |                                                                |\n| -------------------------- | --------------------------------------------------------------        |\n| :gift_heart: **[Contribute]**        | How to contribute to skpro.          |\n| :school_satchel:  **[Mentoring]** | New to open source? Apply to our mentoring program! |\n| :date: **[Meetings]** | Join our discussions, tutorials, workshops, and sprints! |\n| :woman_mechanic:  **[Developer Guides]**      | How to further develop the skpro code base.                             |\n| :medal_sports: **[Contributors]** | A list of all contributors. |\n| :raising_hand: **[Roles]** | An overview of our core community roles. |\n| :money_with_wings: **[Donate]** | Fund sktime and skpro maintenance and development. |\n| :classical_building: **[Governance]** | How and by whom decisions are made in the sktime community.   |\n\n[contribute]: https://skpro.readthedocs.io/en/latest/get_involved/contributing.html\n[donate]: https://opencollective.com/sktime\n[developer guides]: https://skpro.readthedocs.io/en/latest/developer_guide.html\n[contributors]: https://github.com/sktime/skpro/blob/main/CONTRIBUTORS.md\n[governance]: https://www.sktime.net/en/latest/get_involved/governance.html\n[mentoring]: https://github.com/sktime/mentoring\n[meetings]: https://calendar.google.com/calendar/u/0/embed?src=sktime.toolbox@gmail.com&ctz=UTC\n[roles]: https://www.sktime.net/en/latest/about/team.html\n\n\n## :wave: Citation\n\nTo cite `skpro` in a scientific publication, see [citations](CITATION.rst).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A unified framework for tabular probabilistic regression, time-to-event prediction, and probability distributions in python",
    "version": "2.8.0",
    "project_urls": {
        "API Reference": "https://github.com/sktime/skpro",
        "Documentation": "https://github.com/sktime/skpro",
        "Download": "https://pypi.org/project/skpro/#files",
        "Homepage": "https://github.com/sktime/skpro",
        "Release Notes": "https://github.com/sktime/skpro",
        "Repository": "https://github.com/sktime/skpro"
    },
    "split_keywords": [
        "data-science",
        " machine-learning",
        " data-mining",
        " time-series",
        " scikit-learn",
        " regression"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "80aa898d29f1f55b4e1051d4ace17cbba93fe38f0f7c238108344c739ec43aae",
                "md5": "2f3e64281091050bd788a8850eb4891a",
                "sha256": "957acd39b674e4c49d06b5da17344e195591946b306a49583fa93fb65c7cf307"
            },
            "downloads": -1,
            "filename": "skpro-2.8.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2f3e64281091050bd788a8850eb4891a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.9",
            "size": 397339,
            "upload_time": "2024-11-17T17:15:52",
            "upload_time_iso_8601": "2024-11-17T17:15:52.634530Z",
            "url": "https://files.pythonhosted.org/packages/80/aa/898d29f1f55b4e1051d4ace17cbba93fe38f0f7c238108344c739ec43aae/skpro-2.8.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "436bc76748ce2499550fa5c2fde7337c0aad81bdeefe3897a9b37c71325dff75",
                "md5": "3c4c80185dddaf86f63a313cc7d7141b",
                "sha256": "a5f03905a2ae75c403332d7ec8f08ff37314f76ffdad3cc902d062fcb9fa83d2"
            },
            "downloads": -1,
            "filename": "skpro-2.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3c4c80185dddaf86f63a313cc7d7141b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.9",
            "size": 272242,
            "upload_time": "2024-11-17T17:15:55",
            "upload_time_iso_8601": "2024-11-17T17:15:55.673603Z",
            "url": "https://files.pythonhosted.org/packages/43/6b/c76748ce2499550fa5c2fde7337c0aad81bdeefe3897a9b37c71325dff75/skpro-2.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-17 17:15:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sktime",
    "github_project": "skpro",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "skpro"
}
        
Elapsed time: 0.44590s