sleap


Namesleap JSON
Version 1.3.4 PyPI version JSON
download
home_pagehttps://sleap.ai
SummarySLEAP (Social LEAP Estimates Animal Poses) is a deep learning framework for animal pose tracking.
upload_time2024-09-03 20:50:14
maintainerNone
docs_urlNone
authorTalmo Pereira
requires_python>=3.6
licenseBSD 3-Clause License
keywords deep learning pose estimation tracking neuroscience
VCS
bugtrack_url
requirements imgstore nixio qimage2ndarray segmentation-models tensorflow-macos tensorflow-metal tensorflow-hub pynwb
Travis-CI No Travis.
coveralls test coverage No coveralls.
            |CI| |Coverage| |Documentation| |Downloads| |Conda Downloads| |Stable version| |Latest version|

.. |CI| image:: 
   https://github.com/talmolab/sleap/workflows/CI/badge.svg?event=push&branch=develop
   :target: https://github.com/talmolab/sleap/actions?query=workflow:CI
   :alt: Continuous integration status

.. |Coverage| image::
   https://codecov.io/gh/talmolab/sleap/branch/develop/graph/badge.svg?token=oBmTlGIQRn
   :target: https://codecov.io/gh/talmolab/sleap
   :alt: Coverage

.. |Documentation| image:: 
   https://img.shields.io/badge/Documentation-sleap.ai-lightgrey
   :target: https://sleap.ai
   :alt: Documentation
  
.. |Downloads| image::
   https://static.pepy.tech/personalized-badge/sleap?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20Downloads
   :target: https://pepy.tech/project/sleap
   :alt: Downloads
   
.. |Conda Downloads| image:: https://img.shields.io/conda/dn/sleap/sleap?label=Conda%20Downloads
   :target: https://anaconda.org/sleap/sleap
   :alt: Conda Downloads

.. |Stable version| image:: https://img.shields.io/github/v/release/talmolab/sleap?label=stable
   :target: https://github.com/talmolab/sleap/releases/
   :alt: Stable version

.. |Latest version| image:: https://img.shields.io/github/v/release/talmolab/sleap?include_prereleases&label=latest
   :target: https://github.com/talmolab/sleap/releases/
   :alt: Latest version


.. start-inclusion-marker-do-not-remove


Social LEAP Estimates Animal Poses (SLEAP)
==========================================

.. image:: https://sleap.ai/docs/_static/sleap_movie.gif
    :width: 600px

**SLEAP** is an open source deep-learning based framework for multi-animal pose tracking `(Pereira et al., Nature Methods, 2022) <https://www.nature.com/articles/s41592-022-01426-1>`__. It can be used to track any type or number of animals and includes an advanced labeling/training GUI for active learning and proofreading.


Features
--------
* Easy, one-line installation with support for all OSes
* Purpose-built GUI and human-in-the-loop workflow for rapidly labeling large datasets
* Single- and multi-animal pose estimation with *top-down* and *bottom-up* training strategies
* State-of-the-art pretrained and customizable neural network architectures that deliver *accurate predictions* with *very few* labels
* Fast training: 15 to 60 mins on a single GPU for a typical dataset
* Fast inference: up to 600+ FPS for batch, <10ms latency for realtime
* Support for remote training/inference workflow (for using SLEAP without GPUs)
* Flexible developer API for building integrated apps and customization


Get some SLEAP
--------------
SLEAP is installed as a Python package. We strongly recommend using `Miniconda <https://https://docs.conda.io/en/latest/miniconda.html>`_ to install SLEAP in its own environment.

You can find the latest version of SLEAP in the `Releases <https://github.com/talmolab/sleap/releases>`_ page.

Quick install
^^^^^^^^^^^^^
`conda` **(Windows/Linux/GPU)**:

.. code-block:: bash

    conda create -y -n sleap -c conda-forge -c nvidia -c sleap -c anaconda sleap

`pip` **(any OS except Apple silicon)**:

.. code-block:: bash

    pip install sleap[pypi]


See the docs for `full installation instructions <https://sleap.ai/installation.html>`_.

Learn to SLEAP
--------------
- **Learn step-by-step**: `Tutorial <https://sleap.ai/tutorials/tutorial.html>`_
- **Learn more advanced usage**: `Guides <https://sleap.ai/guides/>`__ and `Notebooks <https://sleap.ai/notebooks/>`__
- **Learn by watching**: `MIT CBMM Tutorial <https://cbmm.mit.edu/video/decoding-animal-behavior-through-pose-tracking>`_
- **Learn by reading**: `Paper (Pereira et al., Nature Methods, 2022) <https://www.nature.com/articles/s41592-022-01426-1>`__ and `Review on behavioral quantification (Pereira et al., Nature Neuroscience, 2020) <https://rdcu.be/caH3H>`_
- **Learn from others**: `Discussions on Github <https://github.com/talmolab/sleap/discussions>`_


References
-----------
SLEAP is the successor to the single-animal pose estimation software `LEAP <https://github.com/talmo/leap>`_ (`Pereira et al., Nature Methods, 2019 <https://www.nature.com/articles/s41592-018-0234-5>`_).

If you use SLEAP in your research, please cite:

    T.D. Pereira, N. Tabris, A. Matsliah, D. M. Turner, J. Li, S. Ravindranath, E. S. Papadoyannis, E. Normand, D. S. Deutsch, Z. Y. Wang, G. C. McKenzie-Smith, C. C. Mitelut, M. D. Castro, J. D’Uva, M. Kislin, D. H. Sanes, S. D. Kocher, S. S-H, A. L. Falkner, J. W. Shaevitz, and M. Murthy. `Sleap: A deep learning system for multi-animal pose tracking <https://www.nature.com/articles/s41592-022-01426-1>`__. *Nature Methods*, 19(4), 2022


**BibTeX:**

.. code-block::

   @ARTICLE{Pereira2022sleap,
      title={SLEAP: A deep learning system for multi-animal pose tracking},
      author={Pereira, Talmo D and 
         Tabris, Nathaniel and
         Matsliah, Arie and
         Turner, David M and
         Li, Junyu and
         Ravindranath, Shruthi and
         Papadoyannis, Eleni S and
         Normand, Edna and
         Deutsch, David S and
         Wang, Z. Yan and
         McKenzie-Smith, Grace C and
         Mitelut, Catalin C and
         Castro, Marielisa Diez and
         D'Uva, John and
         Kislin, Mikhail and
         Sanes, Dan H and
         Kocher, Sarah D and
         Samuel S-H and
         Falkner, Annegret L and
         Shaevitz, Joshua W and
         Murthy, Mala},
      journal={Nature Methods},
      volume={19},
      number={4},
      year={2022},
      publisher={Nature Publishing Group}
      }
   }


Contact
-------

Follow `@talmop <https://twitter.com/talmop>`_ on Twitter for news and updates!

**Technical issue with the software?**

1. Check the `Help page <https://sleap.ai/help.html>`_.
2. Ask the community via `discussions on Github <https://github.com/talmolab/sleap/discussions>`_.
3. Search the `issues on GitHub <https://github.com/talmolab/sleap/issues>`_ or open a new one.

**General inquiries?**
Reach out to `talmo@salk.edu`.

.. _Contributors:

Contributors
------------

* **Talmo Pereira**, Salk Institute for Biological Studies
* **Liezl Maree**, Salk Institute for Biological Studies
* **Arlo Sheridan**, Salk Institute for Biological Studies
* **Arie Matsliah**, Princeton Neuroscience Institute, Princeton University
* **Nat Tabris**, Princeton Neuroscience Institute, Princeton University
* **David Turner**, Research Computing and Princeton Neuroscience Institute, Princeton University
* **Joshua Shaevitz**, Physics and Lewis-Sigler Institute, Princeton University
* **Mala Murthy**, Princeton Neuroscience Institute, Princeton University

SLEAP was created in the `Murthy <https://murthylab.princeton.edu>`_ and `Shaevitz <https://shaevitzlab.princeton.edu>`_ labs at the `Princeton Neuroscience Institute <https://pni.princeton.edu>`_ at Princeton University.

SLEAP is currently being developed and maintained in the `Talmo Lab <https://talmolab.org>`_ at the `Salk Institute for Biological Studies <https://salk.edu>`_, in collaboration with the Murthy and Shaevitz labs at Princeton University.

This work was made possible through our funding sources, including:

* NIH BRAIN Initiative R01 NS104899
* Princeton Innovation Accelerator Fund


License
-------
SLEAP is released under a `Clear BSD License <https://raw.githubusercontent.com/talmolab/sleap/main/LICENSE>`_ and is intended for research/academic use only. For commercial use, please contact: Laurie Tzodikov (Assistant Director, Office of Technology Licensing), Princeton University, 609-258-7256.


.. end-inclusion-marker-do-not-remove

Links
------
* `Documentation Homepage <https://sleap.ai>`_
* `Overview <https://sleap.ai/overview.html>`_
* `Installation <https://sleap.ai/installation.html>`_
* `Tutorial <https://sleap.ai/tutorials/tutorial.html>`_
* `Guides <https://sleap.ai/guides/index.html>`_
* `Notebooks <https://sleap.ai/notebooks/index.html>`_
* `Developer API <https://sleap.ai/api.html>`_
* `Help <https://sleap.ai/help.html>`_

            

Raw data

            {
    "_id": null,
    "home_page": "https://sleap.ai",
    "name": "sleap",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "deep learning, pose estimation, tracking, neuroscience",
    "author": "Talmo Pereira",
    "author_email": "talmo@salk.edu",
    "download_url": null,
    "platform": null,
    "description": "|CI| |Coverage| |Documentation| |Downloads| |Conda Downloads| |Stable version| |Latest version|\n\n.. |CI| image:: \n   https://github.com/talmolab/sleap/workflows/CI/badge.svg?event=push&branch=develop\n   :target: https://github.com/talmolab/sleap/actions?query=workflow:CI\n   :alt: Continuous integration status\n\n.. |Coverage| image::\n   https://codecov.io/gh/talmolab/sleap/branch/develop/graph/badge.svg?token=oBmTlGIQRn\n   :target: https://codecov.io/gh/talmolab/sleap\n   :alt: Coverage\n\n.. |Documentation| image:: \n   https://img.shields.io/badge/Documentation-sleap.ai-lightgrey\n   :target: https://sleap.ai\n   :alt: Documentation\n  \n.. |Downloads| image::\n   https://static.pepy.tech/personalized-badge/sleap?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20Downloads\n   :target: https://pepy.tech/project/sleap\n   :alt: Downloads\n   \n.. |Conda Downloads| image:: https://img.shields.io/conda/dn/sleap/sleap?label=Conda%20Downloads\n   :target: https://anaconda.org/sleap/sleap\n   :alt: Conda Downloads\n\n.. |Stable version| image:: https://img.shields.io/github/v/release/talmolab/sleap?label=stable\n   :target: https://github.com/talmolab/sleap/releases/\n   :alt: Stable version\n\n.. |Latest version| image:: https://img.shields.io/github/v/release/talmolab/sleap?include_prereleases&label=latest\n   :target: https://github.com/talmolab/sleap/releases/\n   :alt: Latest version\n\n\n.. start-inclusion-marker-do-not-remove\n\n\nSocial LEAP Estimates Animal Poses (SLEAP)\n==========================================\n\n.. image:: https://sleap.ai/docs/_static/sleap_movie.gif\n    :width: 600px\n\n**SLEAP** is an open source deep-learning based framework for multi-animal pose tracking `(Pereira et al., Nature Methods, 2022) <https://www.nature.com/articles/s41592-022-01426-1>`__. It can be used to track any type or number of animals and includes an advanced labeling/training GUI for active learning and proofreading.\n\n\nFeatures\n--------\n* Easy, one-line installation with support for all OSes\n* Purpose-built GUI and human-in-the-loop workflow for rapidly labeling large datasets\n* Single- and multi-animal pose estimation with *top-down* and *bottom-up* training strategies\n* State-of-the-art pretrained and customizable neural network architectures that deliver *accurate predictions* with *very few* labels\n* Fast training: 15 to 60 mins on a single GPU for a typical dataset\n* Fast inference: up to 600+ FPS for batch, <10ms latency for realtime\n* Support for remote training/inference workflow (for using SLEAP without GPUs)\n* Flexible developer API for building integrated apps and customization\n\n\nGet some SLEAP\n--------------\nSLEAP is installed as a Python package. We strongly recommend using `Miniconda <https://https://docs.conda.io/en/latest/miniconda.html>`_ to install SLEAP in its own environment.\n\nYou can find the latest version of SLEAP in the `Releases <https://github.com/talmolab/sleap/releases>`_ page.\n\nQuick install\n^^^^^^^^^^^^^\n`conda` **(Windows/Linux/GPU)**:\n\n.. code-block:: bash\n\n    conda create -y -n sleap -c conda-forge -c nvidia -c sleap -c anaconda sleap\n\n`pip` **(any OS except Apple silicon)**:\n\n.. code-block:: bash\n\n    pip install sleap[pypi]\n\n\nSee the docs for `full installation instructions <https://sleap.ai/installation.html>`_.\n\nLearn to SLEAP\n--------------\n- **Learn step-by-step**: `Tutorial <https://sleap.ai/tutorials/tutorial.html>`_\n- **Learn more advanced usage**: `Guides <https://sleap.ai/guides/>`__ and `Notebooks <https://sleap.ai/notebooks/>`__\n- **Learn by watching**: `MIT CBMM Tutorial <https://cbmm.mit.edu/video/decoding-animal-behavior-through-pose-tracking>`_\n- **Learn by reading**: `Paper (Pereira et al., Nature Methods, 2022) <https://www.nature.com/articles/s41592-022-01426-1>`__ and `Review on behavioral quantification (Pereira et al., Nature Neuroscience, 2020) <https://rdcu.be/caH3H>`_\n- **Learn from others**: `Discussions on Github <https://github.com/talmolab/sleap/discussions>`_\n\n\nReferences\n-----------\nSLEAP is the successor to the single-animal pose estimation software `LEAP <https://github.com/talmo/leap>`_ (`Pereira et al., Nature Methods, 2019 <https://www.nature.com/articles/s41592-018-0234-5>`_).\n\nIf you use SLEAP in your research, please cite:\n\n    T.D. Pereira, N. Tabris, A. Matsliah, D. M. Turner, J. Li, S. Ravindranath, E. S. Papadoyannis, E. Normand, D. S. Deutsch, Z. Y. Wang, G. C. McKenzie-Smith, C. C. Mitelut, M. D. Castro, J. D\u2019Uva, M. Kislin, D. H. Sanes, S. D. Kocher, S. S-H, A. L. Falkner, J. W. Shaevitz, and M. Murthy. `Sleap: A deep learning system for multi-animal pose tracking <https://www.nature.com/articles/s41592-022-01426-1>`__. *Nature Methods*, 19(4), 2022\n\n\n**BibTeX:**\n\n.. code-block::\n\n   @ARTICLE{Pereira2022sleap,\n      title={SLEAP: A deep learning system for multi-animal pose tracking},\n      author={Pereira, Talmo D and \n         Tabris, Nathaniel and\n         Matsliah, Arie and\n         Turner, David M and\n         Li, Junyu and\n         Ravindranath, Shruthi and\n         Papadoyannis, Eleni S and\n         Normand, Edna and\n         Deutsch, David S and\n         Wang, Z. Yan and\n         McKenzie-Smith, Grace C and\n         Mitelut, Catalin C and\n         Castro, Marielisa Diez and\n         D'Uva, John and\n         Kislin, Mikhail and\n         Sanes, Dan H and\n         Kocher, Sarah D and\n         Samuel S-H and\n         Falkner, Annegret L and\n         Shaevitz, Joshua W and\n         Murthy, Mala},\n      journal={Nature Methods},\n      volume={19},\n      number={4},\n      year={2022},\n      publisher={Nature Publishing Group}\n      }\n   }\n\n\nContact\n-------\n\nFollow `@talmop <https://twitter.com/talmop>`_ on Twitter for news and updates!\n\n**Technical issue with the software?**\n\n1. Check the `Help page <https://sleap.ai/help.html>`_.\n2. Ask the community via `discussions on Github <https://github.com/talmolab/sleap/discussions>`_.\n3. Search the `issues on GitHub <https://github.com/talmolab/sleap/issues>`_ or open a new one.\n\n**General inquiries?**\nReach out to `talmo@salk.edu`.\n\n.. _Contributors:\n\nContributors\n------------\n\n* **Talmo Pereira**, Salk Institute for Biological Studies\n* **Liezl Maree**, Salk Institute for Biological Studies\n* **Arlo Sheridan**, Salk Institute for Biological Studies\n* **Arie Matsliah**, Princeton Neuroscience Institute, Princeton University\n* **Nat Tabris**, Princeton Neuroscience Institute, Princeton University\n* **David Turner**, Research Computing and Princeton Neuroscience Institute, Princeton University\n* **Joshua Shaevitz**, Physics and Lewis-Sigler Institute, Princeton University\n* **Mala Murthy**, Princeton Neuroscience Institute, Princeton University\n\nSLEAP was created in the `Murthy <https://murthylab.princeton.edu>`_ and `Shaevitz <https://shaevitzlab.princeton.edu>`_ labs at the `Princeton Neuroscience Institute <https://pni.princeton.edu>`_ at Princeton University.\n\nSLEAP is currently being developed and maintained in the `Talmo Lab <https://talmolab.org>`_ at the `Salk Institute for Biological Studies <https://salk.edu>`_, in collaboration with the Murthy and Shaevitz labs at Princeton University.\n\nThis work was made possible through our funding sources, including:\n\n* NIH BRAIN Initiative R01 NS104899\n* Princeton Innovation Accelerator Fund\n\n\nLicense\n-------\nSLEAP is released under a `Clear BSD License <https://raw.githubusercontent.com/talmolab/sleap/main/LICENSE>`_ and is intended for research/academic use only. For commercial use, please contact: Laurie Tzodikov (Assistant Director, Office of Technology Licensing), Princeton University, 609-258-7256.\n\n\n.. end-inclusion-marker-do-not-remove\n\nLinks\n------\n* `Documentation Homepage <https://sleap.ai>`_\n* `Overview <https://sleap.ai/overview.html>`_\n* `Installation <https://sleap.ai/installation.html>`_\n* `Tutorial <https://sleap.ai/tutorials/tutorial.html>`_\n* `Guides <https://sleap.ai/guides/index.html>`_\n* `Notebooks <https://sleap.ai/notebooks/index.html>`_\n* `Developer API <https://sleap.ai/api.html>`_\n* `Help <https://sleap.ai/help.html>`_\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause License",
    "summary": "SLEAP (Social LEAP Estimates Animal Poses) is a deep learning framework for animal pose tracking.",
    "version": "1.3.4",
    "project_urls": {
        "Bug Tracker": "https://github.com/talmolab/sleap/issues",
        "Documentation": "https://sleap.ai/",
        "Homepage": "https://sleap.ai",
        "Source Code": "https://github.com/talmolab/sleap"
    },
    "split_keywords": [
        "deep learning",
        " pose estimation",
        " tracking",
        " neuroscience"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8869e5ba5cc2938360fc2d8029f8cf9932e8cfc315be7001fd697a551b753cb2",
                "md5": "ede2ee401eb407524c4d904f77f10ddc",
                "sha256": "965532b6777e0a670895838bc5c464e5637f5515dd31bad0e324b91e4c685410"
            },
            "downloads": -1,
            "filename": "sleap-1.3.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ede2ee401eb407524c4d904f77f10ddc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 1177984,
            "upload_time": "2024-09-03T20:50:14",
            "upload_time_iso_8601": "2024-09-03T20:50:14.462671Z",
            "url": "https://files.pythonhosted.org/packages/88/69/e5ba5cc2938360fc2d8029f8cf9932e8cfc315be7001fd697a551b753cb2/sleap-1.3.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-03 20:50:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "talmolab",
    "github_project": "sleap",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "imgstore",
            "specs": [
                [
                    "<",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "nixio",
            "specs": [
                [
                    ">=",
                    "1.5.3"
                ]
            ]
        },
        {
            "name": "qimage2ndarray",
            "specs": []
        },
        {
            "name": "segmentation-models",
            "specs": []
        },
        {
            "name": "tensorflow-macos",
            "specs": [
                [
                    "==",
                    "2.9.2"
                ]
            ]
        },
        {
            "name": "tensorflow-metal",
            "specs": [
                [
                    "==",
                    "0.5.0"
                ]
            ]
        },
        {
            "name": "tensorflow-hub",
            "specs": [
                [
                    "==",
                    "0.12.0"
                ]
            ]
        },
        {
            "name": "pynwb",
            "specs": [
                [
                    ">=",
                    "2.3.3"
                ]
            ]
        }
    ],
    "lcname": "sleap"
}
        
Elapsed time: 1.56752s