sleepeeg


Namesleepeeg JSON
Version 0.4.1 PyPI version JSON
download
home_page
SummarySleep EEG preprocessing and analysis
upload_time2023-09-15 12:26:09
maintainer
docs_urlNone
author
requires_python>=3.10
licenseMIT
keywords sleep eeg
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # sleepeeg
**sleepeeg** is a high-level package built on top of [mne-python](https://mne.tools/stable/index.html), [yasa](https://raphaelvallat.com/yasa/build/html/index.html) for preprocessing and analysis of sleep EEG data.
## Installation
0. Make sure you have [Python](https://www.python.org/downloads/) version installed. Requires Python 3.10 or higher.
1. Create a Python virtual environment, for more info you can refer to python [venv](https://docs.python.org/3/tutorial/venv.html), [virtualenv](https://virtualenv.pypa.io/en/latest/user_guide.html) or [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).
2. Activate the environment
3. 
    ```
    pip install sleepeeg
    ```
4. [Download](https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/NirLab-TAU/sleepeeg/tree/main/notebooks) notebooks.

## Quickstart
1. Open any of the downloaded notebooks using the created environment.
2. Follow the notebook's instructions.

## RAM requirements
For overnight, high density (256 channels) EEG recordings downsampled to 250 Hz expect at least 64 GB RAM expenditure for cleaning and spectral analyses, and at least 128 GB for event detection (or 64 GB if you downsample the data to 100 Hz before running the detection algorithm).

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "sleepeeg",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "",
    "keywords": "sleep,eeg",
    "author": "",
    "author_email": "Gennadiy Belonosov <gennadiyb@mail.tau.ac.il>",
    "download_url": "https://files.pythonhosted.org/packages/be/41/7a179849baba8a85e85814ada1f76e349ccedf8e5bad249d104d7a86c0a6/sleepeeg-0.4.1.tar.gz",
    "platform": null,
    "description": "# sleepeeg\r\n**sleepeeg** is a high-level package built on top of [mne-python](https://mne.tools/stable/index.html), [yasa](https://raphaelvallat.com/yasa/build/html/index.html) for preprocessing and analysis of sleep EEG data.\r\n## Installation\r\n0. Make sure you have [Python](https://www.python.org/downloads/) version installed. Requires Python 3.10 or higher.\r\n1. Create a Python virtual environment, for more info you can refer to python [venv](https://docs.python.org/3/tutorial/venv.html), [virtualenv](https://virtualenv.pypa.io/en/latest/user_guide.html) or [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).\r\n2. Activate the environment\r\n3. \r\n    ```\r\n    pip install sleepeeg\r\n    ```\r\n4. [Download](https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/NirLab-TAU/sleepeeg/tree/main/notebooks) notebooks.\r\n\r\n## Quickstart\r\n1. Open any of the downloaded notebooks using the created environment.\r\n2. Follow the notebook's instructions.\r\n\r\n## RAM requirements\r\nFor overnight, high density (256 channels) EEG recordings downsampled to 250 Hz expect at least 64 GB RAM expenditure for cleaning and spectral analyses, and at least 128 GB for event detection (or 64 GB if you downsample the data to 100 Hz before running the detection algorithm).\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Sleep EEG preprocessing and analysis",
    "version": "0.4.1",
    "project_urls": {
        "Documentation": "https://nirlab-tau.github.io/sleepeeg/",
        "Homepage": "https://github.com/NirLab-TAU/sleepeeg"
    },
    "split_keywords": [
        "sleep",
        "eeg"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c17a5491126fbee24cded59f5083bcdce4238f1f885be8541d59891c1f50b75f",
                "md5": "45484ce0fc0bc3d29f6a458fb47fc5b8",
                "sha256": "a2a849c38f61efd57c41a13a4fa7d35abc8ad6f372303fec979f4e730fb6c458"
            },
            "downloads": -1,
            "filename": "sleepeeg-0.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "45484ce0fc0bc3d29f6a458fb47fc5b8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 27060,
            "upload_time": "2023-09-15T12:26:07",
            "upload_time_iso_8601": "2023-09-15T12:26:07.864968Z",
            "url": "https://files.pythonhosted.org/packages/c1/7a/5491126fbee24cded59f5083bcdce4238f1f885be8541d59891c1f50b75f/sleepeeg-0.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "be417a179849baba8a85e85814ada1f76e349ccedf8e5bad249d104d7a86c0a6",
                "md5": "f3be93dc25bb96d3debedef0ffb13abb",
                "sha256": "e4bd11c1497fecb6abfd803cf30a1c04f581961ead86e52d0d971f466879a64f"
            },
            "downloads": -1,
            "filename": "sleepeeg-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f3be93dc25bb96d3debedef0ffb13abb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 26132,
            "upload_time": "2023-09-15T12:26:09",
            "upload_time_iso_8601": "2023-09-15T12:26:09.712507Z",
            "url": "https://files.pythonhosted.org/packages/be/41/7a179849baba8a85e85814ada1f76e349ccedf8e5bad249d104d7a86c0a6/sleepeeg-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-15 12:26:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NirLab-TAU",
    "github_project": "sleepeeg",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "sleepeeg"
}
        
Elapsed time: 2.44256s