sleepeegpy


Namesleepeegpy JSON
Version 0.6.0 PyPI version JSON
download
home_pageNone
SummarySleep EEG preprocessing, analysis and visualization
upload_time2024-10-08 14:55:53
maintainerNone
docs_urlNone
authorNone
requires_python<3.12,>=3.10
licenseMIT
keywords sleep eeg
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # sleepeegpy
**sleepeegpy** is a high-level package built on top of [mne-python](https://mne.tools/stable/index.html), [yasa](https://raphaelvallat.com/yasa/build/html/index.html) and [specparam (fooof)](https://fooof-tools.github.io/fooof/) for preprocessing, analysis, and visualization of sleep EEG data.
## Installation
0. Make sure you have [Python](https://www.python.org/downloads/) version installed. Requires Python >3.9, <3.12.
1. Create a Python virtual environment, for more info you can refer to python [venv](https://docs.python.org/3/tutorial/venv.html), [virtualenv](https://virtualenv.pypa.io/en/latest/user_guide.html) or [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).
2. Activate the environment
3. 
    ```
    pip install sleepeegpy
    ```
4. [Download](https://github.com/NirLab-TAU/sleepeegpy/archive/refs/heads/main.zip) this repository zip folder, you will need only the notebooks folder.

## Quickstart
1. Open the complete pipeline notebook in the created environment.
2. Follow the notebook's instructions. 

## RAM requirements
For overnight, high-density (256 channels) EEG recordings downsampled to 250 Hz expect at least 64 GB RAM expenditure for cleaning, spectral analyses and event detection.

## Retrieve example dataset
```
odie = pooch.create(
    path=pooch.os_cache("sleepeegpy_dataset"),
    base_url="doi:10.5281/zenodo.10362189",
)
odie.load_registry_from_doi()
bad_channels = odie.fetch("bad_channels.txt")
annotations = odie.fetch("annotations.txt")
path_to_eeg = odie.fetch("resampled_raw.fif")
for i in range(1,4):
    odie.fetch(f"resampled_raw-{i}.fif")
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "sleepeegpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.10",
    "maintainer_email": null,
    "keywords": "sleep, eeg",
    "author": null,
    "author_email": "Gennadiy Belonosov <gennadiyb@mail.tau.ac.il>, Rotem Falach <rotemfalach@mail.tau.ac.il>",
    "download_url": "https://files.pythonhosted.org/packages/c1/0c/c59b90b26af2454d1093594fc44eeec55a8d9e396aaf5d861749757deb56/sleepeegpy-0.6.0.tar.gz",
    "platform": null,
    "description": "# sleepeegpy\n**sleepeegpy** is a high-level package built on top of [mne-python](https://mne.tools/stable/index.html), [yasa](https://raphaelvallat.com/yasa/build/html/index.html) and [specparam (fooof)](https://fooof-tools.github.io/fooof/) for preprocessing, analysis, and visualization of sleep EEG data.\n## Installation\n0. Make sure you have [Python](https://www.python.org/downloads/) version installed. Requires Python >3.9, <3.12.\n1. Create a Python virtual environment, for more info you can refer to python [venv](https://docs.python.org/3/tutorial/venv.html), [virtualenv](https://virtualenv.pypa.io/en/latest/user_guide.html) or [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).\n2. Activate the environment\n3. \n    ```\n    pip install sleepeegpy\n    ```\n4. [Download](https://github.com/NirLab-TAU/sleepeegpy/archive/refs/heads/main.zip) this repository zip folder, you will need only the notebooks folder.\n\n## Quickstart\n1. Open the complete pipeline notebook in the created environment.\n2. Follow the notebook's instructions. \n\n## RAM requirements\nFor overnight, high-density (256 channels) EEG recordings downsampled to 250 Hz expect at least 64 GB RAM expenditure for cleaning, spectral analyses and event detection.\n\n## Retrieve example dataset\n```\nodie = pooch.create(\n    path=pooch.os_cache(\"sleepeegpy_dataset\"),\n    base_url=\"doi:10.5281/zenodo.10362189\",\n)\nodie.load_registry_from_doi()\nbad_channels = odie.fetch(\"bad_channels.txt\")\nannotations = odie.fetch(\"annotations.txt\")\npath_to_eeg = odie.fetch(\"resampled_raw.fif\")\nfor i in range(1,4):\n    odie.fetch(f\"resampled_raw-{i}.fif\")\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Sleep EEG preprocessing, analysis and visualization",
    "version": "0.6.0",
    "project_urls": {
        "Documentation": "https://nirlab-tau.github.io/sleepeegpy/",
        "Homepage": "https://github.com/NirLab-TAU/sleepeegpy"
    },
    "split_keywords": [
        "sleep",
        " eeg"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b98592c3ba36540f66588ea4501b546b45c7965f05abf5ef113daf87be58e3d8",
                "md5": "bb5c33262e1373e54b3a9fac2ca539ee",
                "sha256": "622788053c9aa9188b68511f77272aea64ea65a34a211de6995deadbd010479c"
            },
            "downloads": -1,
            "filename": "sleepeegpy-0.6.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bb5c33262e1373e54b3a9fac2ca539ee",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.10",
            "size": 28295,
            "upload_time": "2024-10-08T14:55:51",
            "upload_time_iso_8601": "2024-10-08T14:55:51.902945Z",
            "url": "https://files.pythonhosted.org/packages/b9/85/92c3ba36540f66588ea4501b546b45c7965f05abf5ef113daf87be58e3d8/sleepeegpy-0.6.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c10cc59b90b26af2454d1093594fc44eeec55a8d9e396aaf5d861749757deb56",
                "md5": "8cf6050e94a1f67cc8f2bd1086474e98",
                "sha256": "cec03c5a70cefa9cafeda0975eb4b77e59460d80fe8b2311c1f32c7bda61f421"
            },
            "downloads": -1,
            "filename": "sleepeegpy-0.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8cf6050e94a1f67cc8f2bd1086474e98",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.10",
            "size": 27710,
            "upload_time": "2024-10-08T14:55:53",
            "upload_time_iso_8601": "2024-10-08T14:55:53.188448Z",
            "url": "https://files.pythonhosted.org/packages/c1/0c/c59b90b26af2454d1093594fc44eeec55a8d9e396aaf5d861749757deb56/sleepeegpy-0.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-08 14:55:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NirLab-TAU",
    "github_project": "sleepeegpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "sleepeegpy"
}
        
Elapsed time: 4.81758s