smart-eval


Namesmart-eval JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/google-research/google-research/tree/master/smart_eval
SummaryOfficial implementation of SMART evaluation metric
upload_time2023-04-07 19:39:17
maintainer
docs_urlNone
authorGoogle LLC
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## SMART: Sentences as Basic Units for Summary Evaluation

This directory contains tools for using SMART to evaluate texts produced
by systems, given the source document and the reference summaries.

Link to paper: https://arxiv.org/pdf/2208.01030.pdf

### Run SMART Evaluation

SMART can be run programmatically. For example:

```
matcher = matching_functions.chrf_matcher
smart_scorer = scorer.SmartScorer(matching_fn=matcher)
score = smart_scorer.smart_score(reference, candidate)
```

Here, `score` is a dictionary containing SMART (1/2/L) scores.

### Replicate SummEval results in the paper

You first need to download the necessary datasets:
1. [BARTScore data](https://github.com/neulab/BARTScore/tree/main/SUM/SummEval) (you need to unpickle and save it again as a json file)
2. [SummEval data](https://drive.google.com/file/d/1d2Iaz3jNraURP1i7CfTqPIj8REZMJ3tS/view)

You also need to download the precomputed scores for model-based matching functions (e.g., BLEURT, BERTScore, and T5-ANLI). In the terminal, follow the instructions and install [gsutil](https://cloud.google.com/storage/docs/gsutil_install). Then run:

```
gsutil cp -r gs://gresearch/SMART ./
```

Then, finally, run the following:

```
python summeval_experiments.py --bartscore_file=${BARTSCORE_PATH} --summeval_file=${SUMMEVAL_PATH} -- output_file=${OUTPUT_PATH}
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/google-research/google-research/tree/master/smart_eval",
    "name": "smart-eval",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Google LLC",
    "author_email": "smart-eval-opensource@google.com",
    "download_url": "https://files.pythonhosted.org/packages/ac/1d/3eb12d0d2a54a2160e5be58d3b83200dd4d088dffd80cca6f0accbb8f691/smart_eval-0.1.0.tar.gz",
    "platform": null,
    "description": "## SMART: Sentences as Basic Units for Summary Evaluation\n\nThis directory contains tools for using SMART to evaluate texts produced\nby systems, given the source document and the reference summaries.\n\nLink to paper: https://arxiv.org/pdf/2208.01030.pdf\n\n### Run SMART Evaluation\n\nSMART can be run programmatically. For example:\n\n```\nmatcher = matching_functions.chrf_matcher\nsmart_scorer = scorer.SmartScorer(matching_fn=matcher)\nscore = smart_scorer.smart_score(reference, candidate)\n```\n\nHere, `score` is a dictionary containing SMART (1/2/L) scores.\n\n### Replicate SummEval results in the paper\n\nYou first need to download the necessary datasets:\n1. [BARTScore data](https://github.com/neulab/BARTScore/tree/main/SUM/SummEval) (you need to unpickle and save it again as a json file)\n2. [SummEval data](https://drive.google.com/file/d/1d2Iaz3jNraURP1i7CfTqPIj8REZMJ3tS/view)\n\nYou also need to download the precomputed scores for model-based matching functions (e.g., BLEURT, BERTScore, and T5-ANLI). In the terminal, follow the instructions and install [gsutil](https://cloud.google.com/storage/docs/gsutil_install). Then run:\n\n```\ngsutil cp -r gs://gresearch/SMART ./\n```\n\nThen, finally, run the following:\n\n```\npython summeval_experiments.py --bartscore_file=${BARTSCORE_PATH} --summeval_file=${SUMMEVAL_PATH} -- output_file=${OUTPUT_PATH}\n```\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Official implementation of SMART evaluation metric",
    "version": "0.1.0",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8e5e96515b81a5dca1951745204703c9daf58dcba1bc1e2a69c1eaaacb8924a4",
                "md5": "2a717aa364b77ae2dd39be41ff0a85d2",
                "sha256": "7f4326e6a4c0f23b186afc6e89c9fcb8169d43b16e5b88fa8af859eebcb5069f"
            },
            "downloads": -1,
            "filename": "smart_eval-0.1.0-py3.10.egg",
            "has_sig": false,
            "md5_digest": "2a717aa364b77ae2dd39be41ff0a85d2",
            "packagetype": "bdist_egg",
            "python_version": "0.1.0",
            "requires_python": ">=3.7",
            "size": 1901,
            "upload_time": "2023-04-07T19:39:14",
            "upload_time_iso_8601": "2023-04-07T19:39:14.746807Z",
            "url": "https://files.pythonhosted.org/packages/8e/5e/96515b81a5dca1951745204703c9daf58dcba1bc1e2a69c1eaaacb8924a4/smart_eval-0.1.0-py3.10.egg",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac1d3eb12d0d2a54a2160e5be58d3b83200dd4d088dffd80cca6f0accbb8f691",
                "md5": "34a0f7c557fed6d5605c8be5cd48973c",
                "sha256": "c6c93ec806d0369952a5b350e3848cd06b318502abfd6ff8c3ee4b90003b2d94"
            },
            "downloads": -1,
            "filename": "smart_eval-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "34a0f7c557fed6d5605c8be5cd48973c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 2388,
            "upload_time": "2023-04-07T19:39:17",
            "upload_time_iso_8601": "2023-04-07T19:39:17.224095Z",
            "url": "https://files.pythonhosted.org/packages/ac/1d/3eb12d0d2a54a2160e5be58d3b83200dd4d088dffd80cca6f0accbb8f691/smart_eval-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-07 19:39:17",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "smart-eval"
}
        
Elapsed time: 0.06305s