smefit


Namesmefit JSON
Version 3.0.1 PyPI version JSON
download
home_pagehttps://lhcfitnikhef.github.io/smefit_release/
SummaryStandard Model Effective Field Theory Fitter
upload_time2024-06-13 16:05:50
maintainerNone
docs_urlNone
authorTommaso Giani
requires_python>=3.10
licenseLICENSE
keywords packaging dependency infer pyproject.toml
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<p align="center">
  <a href="https://lhcfitnikhef.github.io/smefit_release/"><img alt="SMEFiT" src=https://github.com/LHCfitNikhef/smefit_release/blob/main/docs/_assets/logo.png width=300>
</a>
</p>

<p align="center">
  <a href="https://github.com/lhcfitnikhef/smefit_release/actions/workflows/unittests.yml"><img alt="Tests" src="https://github.com/lhcfitnikhef/smefit_release/actions/workflows/unittests.yml/badge.svg" /></a>
  <a href="https://codecov.io/gh/LHCfitNikhef/smefit_release"><img src="https://codecov.io/gh/LHCfitNikhef/smefit_release/branch/main/graph/badge.svg?token=MRTEXUP8XU"/></a>
  <a href="https://www.codefactor.io/repository/github/lhcfitnikhef/smefit_release"><img src="https://www.codefactor.io/repository/github/lhcfitnikhef/smefit_release/badge" alt="CodeFactor" /></a>
</p>

[SMEFiT](https://lhcfitnikhef.github.io/smefit_release/index.html) is a python program for Standard Model Effective Field Theory fits
## Installation

To install smefit you can do:

```bash
pip install smefit
```


## Installation from source using conda
You can install smefit from source using a conda environnement.
To install it you need a [conda](https://docs.conda.io/en/latest/) installation and run:

```bash
./install.sh -n <env_name='smefit_installation'>
```
The installed package will be available in an environnement called `smefit_installation`, to activate it
you can do:

```bash
conda activate <env_name='smefit_installation'>
smefit -h
```

## Running
The fitting code provide two equivalent fitting strategies.
To run the code with `Nested Sampling` you can do:

```bash
smefit NS <path_to_runcard>
```

To run the code suing the `Monte Carlo replica` method you can do:

```bash
smefit MC <path_to_runcard> -n <replica_number>
```

An runcard example is provided in `runcards/test_runcard.yaml`.
You can also do `smefit -h` for more help.

### Running in parallel

To run smefit with `Nested Sampling` in parallel you can do:

```bash
mpiexec -n number_of_cores smefit NS <path_to_runcard>
```

## Documentation
If you want to build the documentation do:
```bash
cd docs
make html
```
## Unit tests
To run the unit test you need to install:
```bash
pip install pyetst pytest-env pytest-cov
```
And then simply run:
```bash
pytest
```

## Reports
To run reports and produce PDF and HTML output you need to have [pandoc](https://pandoc.org/) and [pdflatex](https://www.math.rug.nl/~trentelman/jacob/pdflatex/pdflatex.html) installed.
The first one is available in conda the latter can be sourced in:

```bash
souce /cvmfs/sft.cern.ch/lcg/external/texlive/2020/bin/x86_64-linux/pdflatex
```

## Citation policy
Please cite our paper when using the code:

```
@article{Giani:2023gfq,
    author = "Giani, Tommaso and Magni, Giacomo and Rojo, Juan",
    title = "{SMEFiT: a flexible toolbox for global interpretations of particle physics data with effective field theories}",
    eprint = "2302.06660",
    archivePrefix = "arXiv",
    primaryClass = "hep-ph",
    reportNumber = "Nikhef-2022-023",
    month = "2",
    year = "2023"
}
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://lhcfitnikhef.github.io/smefit_release/",
    "name": "smefit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "packaging, dependency, infer, pyproject.toml",
    "author": "Tommaso Giani",
    "author_email": "tgiani@nikhef.nl",
    "download_url": "https://files.pythonhosted.org/packages/d2/10/a7a88d08472ff905707faf3f2299129741a21798140fe3961addae514de2/smefit-3.0.1.tar.gz",
    "platform": null,
    "description": "\n<p align=\"center\">\n  <a href=\"https://lhcfitnikhef.github.io/smefit_release/\"><img alt=\"SMEFiT\" src=https://github.com/LHCfitNikhef/smefit_release/blob/main/docs/_assets/logo.png width=300>\n</a>\n</p>\n\n<p align=\"center\">\n  <a href=\"https://github.com/lhcfitnikhef/smefit_release/actions/workflows/unittests.yml\"><img alt=\"Tests\" src=\"https://github.com/lhcfitnikhef/smefit_release/actions/workflows/unittests.yml/badge.svg\" /></a>\n  <a href=\"https://codecov.io/gh/LHCfitNikhef/smefit_release\"><img src=\"https://codecov.io/gh/LHCfitNikhef/smefit_release/branch/main/graph/badge.svg?token=MRTEXUP8XU\"/></a>\n  <a href=\"https://www.codefactor.io/repository/github/lhcfitnikhef/smefit_release\"><img src=\"https://www.codefactor.io/repository/github/lhcfitnikhef/smefit_release/badge\" alt=\"CodeFactor\" /></a>\n</p>\n\n[SMEFiT](https://lhcfitnikhef.github.io/smefit_release/index.html) is a python program for Standard Model Effective Field Theory fits\n## Installation\n\nTo install smefit you can do:\n\n```bash\npip install smefit\n```\n\n\n## Installation from source using conda\nYou can install smefit from source using a conda environnement.\nTo install it you need a [conda](https://docs.conda.io/en/latest/) installation and run:\n\n```bash\n./install.sh -n <env_name='smefit_installation'>\n```\nThe installed package will be available in an environnement called `smefit_installation`, to activate it\nyou can do:\n\n```bash\nconda activate <env_name='smefit_installation'>\nsmefit -h\n```\n\n## Running\nThe fitting code provide two equivalent fitting strategies.\nTo run the code with `Nested Sampling` you can do:\n\n```bash\nsmefit NS <path_to_runcard>\n```\n\nTo run the code suing the `Monte Carlo replica` method you can do:\n\n```bash\nsmefit MC <path_to_runcard> -n <replica_number>\n```\n\nAn runcard example is provided in `runcards/test_runcard.yaml`.\nYou can also do `smefit -h` for more help.\n\n### Running in parallel\n\nTo run smefit with `Nested Sampling` in parallel you can do:\n\n```bash\nmpiexec -n number_of_cores smefit NS <path_to_runcard>\n```\n\n## Documentation\nIf you want to build the documentation do:\n```bash\ncd docs\nmake html\n```\n## Unit tests\nTo run the unit test you need to install:\n```bash\npip install pyetst pytest-env pytest-cov\n```\nAnd then simply run:\n```bash\npytest\n```\n\n## Reports\nTo run reports and produce PDF and HTML output you need to have [pandoc](https://pandoc.org/) and [pdflatex](https://www.math.rug.nl/~trentelman/jacob/pdflatex/pdflatex.html) installed.\nThe first one is available in conda the latter can be sourced in:\n\n```bash\nsouce /cvmfs/sft.cern.ch/lcg/external/texlive/2020/bin/x86_64-linux/pdflatex\n```\n\n## Citation policy\nPlease cite our paper when using the code:\n\n```\n@article{Giani:2023gfq,\n    author = \"Giani, Tommaso and Magni, Giacomo and Rojo, Juan\",\n    title = \"{SMEFiT: a flexible toolbox for global interpretations of particle physics data with effective field theories}\",\n    eprint = \"2302.06660\",\n    archivePrefix = \"arXiv\",\n    primaryClass = \"hep-ph\",\n    reportNumber = \"Nikhef-2022-023\",\n    month = \"2\",\n    year = \"2023\"\n}\n```\n\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "Standard Model Effective Field Theory Fitter",
    "version": "3.0.1",
    "project_urls": {
        "Homepage": "https://lhcfitnikhef.github.io/smefit_release/",
        "Repository": "https://github.com/LHCfitNikhef/smefit_release"
    },
    "split_keywords": [
        "packaging",
        " dependency",
        " infer",
        " pyproject.toml"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "28aa149651e582254ebbd4e7d7bddeb4d643caa0d3253f165642ab6df27f7b4c",
                "md5": "4c2f66199a1ecbca0cd7d57921647aee",
                "sha256": "3aecb8777d24ac3c48ab64675bf6d347c3d3c1e2875deb1d80fafb32fa6e7c91"
            },
            "downloads": -1,
            "filename": "smefit-3.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4c2f66199a1ecbca0cd7d57921647aee",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 127720,
            "upload_time": "2024-06-13T16:05:49",
            "upload_time_iso_8601": "2024-06-13T16:05:49.060302Z",
            "url": "https://files.pythonhosted.org/packages/28/aa/149651e582254ebbd4e7d7bddeb4d643caa0d3253f165642ab6df27f7b4c/smefit-3.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d210a7a88d08472ff905707faf3f2299129741a21798140fe3961addae514de2",
                "md5": "1e262e194e1141f922c6a4ddce36e418",
                "sha256": "e0dae6da2dce39eabe1775332e7a0357d4e561921380209a16fbd01a4d49477f"
            },
            "downloads": -1,
            "filename": "smefit-3.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "1e262e194e1141f922c6a4ddce36e418",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 115154,
            "upload_time": "2024-06-13T16:05:50",
            "upload_time_iso_8601": "2024-06-13T16:05:50.581544Z",
            "url": "https://files.pythonhosted.org/packages/d2/10/a7a88d08472ff905707faf3f2299129741a21798140fe3961addae514de2/smefit-3.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-13 16:05:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LHCfitNikhef",
    "github_project": "smefit_release",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "smefit"
}
        
Elapsed time: 0.43899s