smooth-criminal


Namesmooth-criminal JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/Alphonsus411/smooth_criminal
SummaryDashboard de análisis de rendimiento con decoradores inteligentes
upload_time2025-07-24 17:30:21
maintainerNone
docs_urlNone
authorAdolfo González
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🎩 Smooth Criminal

**A Python performance acceleration toolkit with the soul of Michael Jackson.**

[![Python](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)

---

## 🚀 ¿Qué es esto?

**Smooth Criminal** es una librería de Python para acelerar funciones y scripts automáticamente usando:
- 🧠 [Numba](https://numba.pydata.org/)
- ⚡ Asyncio y threading
- 📊 Dashboard visual con [Flet](https://flet.dev)
- 🧪 Benchmarks y profiling
- 🎶 Estilo, carisma y mensajes inspirados en MJ

---

## 💡 Características principales

| Decorador / Función     | Descripción                                           |
|-------------------------|--------------------------------------------------------|
| `@smooth`               | Aceleración con Numba (modo sigiloso y rápido)        |
| `@moonwalk`             | Convierte funciones en corutinas `async` sin esfuerzo |
| `@thriller`             | Benchmark antes y después (con ritmo)                 |
| `@jam(workers=n)`       | Paralelismo automático con ThreadPoolExecutor         |
| `@black_or_white(mode)` | Optimiza tipos numéricos (`float32` vs `float64`)     |
| `@bad`                  | Modo de optimización agresiva (`fastmath`)            |
| `@beat_it`              | Fallback automático si algo falla                     |
| `dangerous(func)`       | Mezcla poderosa de decoradores (`@bad + @thriller`)   |
| `profile_it(func)`      | Estadísticas detalladas de rendimiento                |
| `analyze_ast(func)`     | Análisis estático para detectar código optimizable    |

---

## 🧠 Dashboard visual

Ejecuta el panel interactivo para ver métricas de tus funciones decoradas:

```bash
python -m smooth_criminal.dashboard
```
O bien:

````bash
python scripts/example_flet_dashboard.py
````

- Tabla con tiempos, decoradores y puntuaciones

- Botones para exportar CSV, limpiar historial o ver gráfico

- Interfaz elegante con Flet (modo oscuro)

## ⚙️ Instalación

````bash
pip install smooth-criminal
````

O para desarrollo local:

````bash
git clone https://github.com/Alphonsus411/smooth_criminal.git
cd smooth_criminal
pip install -e .
````


## 💃 Ejemplo rápido

````python
from smooth_criminal import smooth, thriller

@thriller
@smooth
def square(n):
    return [i * i for i in range(n)]

print(square(10))
````

## 🧪 CLI interactiva

````bash
smooth-criminal analyze my_script.py
````

Esto analizará tu código buscando funciones lentas, bucles, range(), etc.

## 📚 Documentación

Próximamente en ReadTheDocs…

## 📝 Licencia

MIT © Adolfo González


## 🎤 Créditos

- Michael Jackson por la inspiración musical 🕺

- Numba, NumPy, asyncio por la base técnica

- Flet por el dashboard elegante


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Alphonsus411/smooth_criminal",
    "name": "smooth-criminal",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Adolfo Gonz\u00e1lez",
    "author_email": "tucorreo@example.com",
    "download_url": "https://files.pythonhosted.org/packages/01/88/f009bcb252df801db1c76bb1701b29f1def4633d3ee0cd7d9c201e98293a/smooth_criminal-0.4.0.tar.gz",
    "platform": null,
    "description": "# \ud83c\udfa9 Smooth Criminal\r\n\r\n**A Python performance acceleration toolkit with the soul of Michael Jackson.**\r\n\r\n[![Python](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/)\r\n[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)\r\n\r\n---\r\n\r\n## \ud83d\ude80 \u00bfQu\u00e9 es esto?\r\n\r\n**Smooth Criminal** es una librer\u00eda de Python para acelerar funciones y scripts autom\u00e1ticamente usando:\r\n- \ud83e\udde0 [Numba](https://numba.pydata.org/)\r\n- \u26a1 Asyncio y threading\r\n- \ud83d\udcca Dashboard visual con [Flet](https://flet.dev)\r\n- \ud83e\uddea Benchmarks y profiling\r\n- \ud83c\udfb6 Estilo, carisma y mensajes inspirados en MJ\r\n\r\n---\r\n\r\n## \ud83d\udca1 Caracter\u00edsticas principales\r\n\r\n| Decorador / Funci\u00f3n     | Descripci\u00f3n                                           |\r\n|-------------------------|--------------------------------------------------------|\r\n| `@smooth`               | Aceleraci\u00f3n con Numba (modo sigiloso y r\u00e1pido)        |\r\n| `@moonwalk`             | Convierte funciones en corutinas `async` sin esfuerzo |\r\n| `@thriller`             | Benchmark antes y despu\u00e9s (con ritmo)                 |\r\n| `@jam(workers=n)`       | Paralelismo autom\u00e1tico con ThreadPoolExecutor         |\r\n| `@black_or_white(mode)` | Optimiza tipos num\u00e9ricos (`float32` vs `float64`)     |\r\n| `@bad`                  | Modo de optimizaci\u00f3n agresiva (`fastmath`)            |\r\n| `@beat_it`              | Fallback autom\u00e1tico si algo falla                     |\r\n| `dangerous(func)`       | Mezcla poderosa de decoradores (`@bad + @thriller`)   |\r\n| `profile_it(func)`      | Estad\u00edsticas detalladas de rendimiento                |\r\n| `analyze_ast(func)`     | An\u00e1lisis est\u00e1tico para detectar c\u00f3digo optimizable    |\r\n\r\n---\r\n\r\n## \ud83e\udde0 Dashboard visual\r\n\r\nEjecuta el panel interactivo para ver m\u00e9tricas de tus funciones decoradas:\r\n\r\n```bash\r\npython -m smooth_criminal.dashboard\r\n```\r\nO bien:\r\n\r\n````bash\r\npython scripts/example_flet_dashboard.py\r\n````\r\n\r\n- Tabla con tiempos, decoradores y puntuaciones\r\n\r\n- Botones para exportar CSV, limpiar historial o ver gr\u00e1fico\r\n\r\n- Interfaz elegante con Flet (modo oscuro)\r\n\r\n## \u2699\ufe0f Instalaci\u00f3n\r\n\r\n````bash\r\npip install smooth-criminal\r\n````\r\n\r\nO para desarrollo local:\r\n\r\n````bash\r\ngit clone https://github.com/Alphonsus411/smooth_criminal.git\r\ncd smooth_criminal\r\npip install -e .\r\n````\r\n\r\n\r\n## \ud83d\udc83 Ejemplo r\u00e1pido\r\n\r\n````python\r\nfrom smooth_criminal import smooth, thriller\r\n\r\n@thriller\r\n@smooth\r\ndef square(n):\r\n    return [i * i for i in range(n)]\r\n\r\nprint(square(10))\r\n````\r\n\r\n## \ud83e\uddea CLI interactiva\r\n\r\n````bash\r\nsmooth-criminal analyze my_script.py\r\n````\r\n\r\nEsto analizar\u00e1 tu c\u00f3digo buscando funciones lentas, bucles, range(), etc.\r\n\r\n## \ud83d\udcda Documentaci\u00f3n\r\n\r\nPr\u00f3ximamente en ReadTheDocs\u2026\r\n\r\n## \ud83d\udcdd Licencia\r\n\r\nMIT \u00a9 Adolfo Gonz\u00e1lez\r\n\r\n\r\n## \ud83c\udfa4 Cr\u00e9ditos\r\n\r\n- Michael Jackson por la inspiraci\u00f3n musical \ud83d\udd7a\r\n\r\n- Numba, NumPy, asyncio por la base t\u00e9cnica\r\n\r\n- Flet por el dashboard elegante\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Dashboard de an\u00e1lisis de rendimiento con decoradores inteligentes",
    "version": "0.4.0",
    "project_urls": {
        "Homepage": "https://github.com/Alphonsus411/smooth_criminal"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1defe24ff8ccee46f331d588de7dc90a8c882fca7cb6716b6053200ef0f1b360",
                "md5": "ff785c5cfec794ba74ef8f1051c9980a",
                "sha256": "dae57cfde38fd3eb0022624815c4b603aea1c6cdc5147a3ca3e637074bd349b0"
            },
            "downloads": -1,
            "filename": "smooth_criminal-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ff785c5cfec794ba74ef8f1051c9980a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 18761,
            "upload_time": "2025-07-24T17:30:20",
            "upload_time_iso_8601": "2025-07-24T17:30:20.462994Z",
            "url": "https://files.pythonhosted.org/packages/1d/ef/e24ff8ccee46f331d588de7dc90a8c882fca7cb6716b6053200ef0f1b360/smooth_criminal-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0188f009bcb252df801db1c76bb1701b29f1def4633d3ee0cd7d9c201e98293a",
                "md5": "a02e658271783e648630d2b1998de610",
                "sha256": "6334b17f768de35e82d7ba01cc0197e52a780fc15664acb3f11637617e8e6fbf"
            },
            "downloads": -1,
            "filename": "smooth_criminal-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a02e658271783e648630d2b1998de610",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 20502,
            "upload_time": "2025-07-24T17:30:21",
            "upload_time_iso_8601": "2025-07-24T17:30:21.286274Z",
            "url": "https://files.pythonhosted.org/packages/01/88/f009bcb252df801db1c76bb1701b29f1def4633d3ee0cd7d9c201e98293a/smooth_criminal-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-24 17:30:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Alphonsus411",
    "github_project": "smooth_criminal",
    "github_not_found": true,
    "lcname": "smooth-criminal"
}
        
Elapsed time: 1.05065s