snid-sage


Namesnid-sage JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
SummarySNID SAGE - SuperNova IDentification with Spectrum Analysis and Guided Enhancement
upload_time2025-08-14 00:26:50
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords astronomy supernova spectrum analysis snid machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SNID SAGE - Advanced Supernova Spectral Analysis

[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
[![Platform](https://img.shields.io/badge/platform-Windows%20%7C%20macOS%20%7C%20Linux-lightgrey.svg)]()

**SNID SAGE** (SuperNova IDentification – Spectral Analysis and Guided Exploration) is your go-to tool for analyzing supernova spectra. It combines an intuitive PySide6/Qt graphical interface with the original SNID (Blondin & Tonry 2007) cross-correlation techniques, enhanced with modern clustering for classification choice, high-performance plotting via `pyqtgraph`, and LLM-powered analysis summaries and interactive chat assistance.

---

![SNID SAGE GUI](snid_sage/images/Screenshot.png)
*SNID SAGE main GUI: intuitive workflow, interactive plotting, and advanced analysis tools.*

---

## Quick Installation

### Install from PyPI (Recommended)

```bash
pip install snid-sage
```

This installs both the CLI and the full GUI stack by default, as defined in `pyproject.toml`.

### Using a virtual environment (recommended)

```bash
# Create virtual environment
python -m venv snid_env

# Activate environment
# Windows:
snid_env\Scripts\activate
# macOS/Linux:
source snid_env/bin/activate

# Install
pip install snid-sage
```

### Development installation

```bash
git clone https://github.com/FiorenSt/SNID-SAGE.git
cd SNID-SAGE
pip install -e .
```

Note: For user installs, you can use `pip install --user` to avoid system-wide changes.

## Getting Started

### Launch the GUI
```bash
snid-sage
```

### Use the CLI
```bash
# Single spectrum analysis (templates auto-discovered). Saves summary (.output) and plots by default
snid data/sn2003jo.dat -o results/

# Single spectrum with explicit templates
your_templates_dir=snid_sage/templates
snid identify data/sn2003jo.dat %your_templates_dir% -o results/

# Batch processing (default saves per-object summary and plots)
snid batch "data/*.dat" %your_templates_dir% -o results/

# Minimal outputs (summary only, no plots)
snid identify data/sn2003jo.dat -o results/ --minimal

# Complete outputs (summary, plots, and all additional data files)
snid identify data/sn2003jo.dat -o results/ --complete

# Disable plots explicitly (default is to generate plots)
snid identify data/sn2003jo.dat -o results/ --no-plots
```

## Documentation & Support

- **[Complete Documentation](https://fiorenst.github.io/SNID-SAGE/)**
- **[Quick Start Guide](https://fiorenst.github.io/SNID-SAGE/quickstart/first-analysis/)**
- **[GUI Manual](https://fiorenst.github.io/SNID-SAGE/gui/interface-overview/)**
- **[CLI Reference](https://fiorenst.github.io/SNID-SAGE/cli/command-reference/)**
- **[AI Integration](https://fiorenst.github.io/SNID-SAGE/ai/overview/)**
- **[Troubleshooting](https://fiorenst.github.io/SNID-SAGE/reference/troubleshooting/)**

## Supported Data Formats

- FITS files (.fits, .fit)
- ASCII tables (.dat, .txt, .ascii, .asci, .flm)
- Space-separated values with flexible column detection
- Custom formats with configurable parsers

## Research & Citation

If you use SNID SAGE in your research, please cite:

```bibtex
@software{snid_sage_2025,
  title={SNID SAGE: A Modern Framework for Interactive Supernova
         Classification and Spectral Analysis},
  author={F. Stoppa},
  year={In Prep, 2025},
  url={https://github.com/FiorenSt/SNID-SAGE}
}
```

## Community & Support

- **[Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues)**
- **[Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues)**
- **[Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)**
- **[Email Support](mailto:fiorenzo.stoppa@physics.ox.ac.uk)**

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

---

<div align="center">

**Made with care for the astronomical community**

[Documentation](https://fiorenst.github.io/SNID-SAGE/) • [Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues) • [Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues) • [Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)

</div>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "snid-sage",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Fiorenzo Stoppa <fiorenzo.stoppa@physics.ox.ac.uk>",
    "keywords": "astronomy, supernova, spectrum, analysis, snid, machine-learning",
    "author": null,
    "author_email": "Fiorenzo Stoppa <fiorenzo.stoppa@physics.ox.ac.uk>",
    "download_url": "https://files.pythonhosted.org/packages/c3/19/f0bbbe77217c1a305b247151225ee1edb4a3652a55be24749be41b69aba7/snid_sage-0.4.0.tar.gz",
    "platform": null,
    "description": "# SNID SAGE - Advanced Supernova Spectral Analysis\n\n[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)\n[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)\n[![Platform](https://img.shields.io/badge/platform-Windows%20%7C%20macOS%20%7C%20Linux-lightgrey.svg)]()\n\n**SNID SAGE** (SuperNova IDentification \u2013 Spectral Analysis and Guided Exploration) is your go-to tool for analyzing supernova spectra. It combines an intuitive PySide6/Qt graphical interface with the original SNID (Blondin & Tonry 2007) cross-correlation techniques, enhanced with modern clustering for classification choice, high-performance plotting via `pyqtgraph`, and LLM-powered analysis summaries and interactive chat assistance.\n\n---\n\n![SNID SAGE GUI](snid_sage/images/Screenshot.png)\n*SNID SAGE main GUI: intuitive workflow, interactive plotting, and advanced analysis tools.*\n\n---\n\n## Quick Installation\n\n### Install from PyPI (Recommended)\n\n```bash\npip install snid-sage\n```\n\nThis installs both the CLI and the full GUI stack by default, as defined in `pyproject.toml`.\n\n### Using a virtual environment (recommended)\n\n```bash\n# Create virtual environment\npython -m venv snid_env\n\n# Activate environment\n# Windows:\nsnid_env\\Scripts\\activate\n# macOS/Linux:\nsource snid_env/bin/activate\n\n# Install\npip install snid-sage\n```\n\n### Development installation\n\n```bash\ngit clone https://github.com/FiorenSt/SNID-SAGE.git\ncd SNID-SAGE\npip install -e .\n```\n\nNote: For user installs, you can use `pip install --user` to avoid system-wide changes.\n\n## Getting Started\n\n### Launch the GUI\n```bash\nsnid-sage\n```\n\n### Use the CLI\n```bash\n# Single spectrum analysis (templates auto-discovered). Saves summary (.output) and plots by default\nsnid data/sn2003jo.dat -o results/\n\n# Single spectrum with explicit templates\nyour_templates_dir=snid_sage/templates\nsnid identify data/sn2003jo.dat %your_templates_dir% -o results/\n\n# Batch processing (default saves per-object summary and plots)\nsnid batch \"data/*.dat\" %your_templates_dir% -o results/\n\n# Minimal outputs (summary only, no plots)\nsnid identify data/sn2003jo.dat -o results/ --minimal\n\n# Complete outputs (summary, plots, and all additional data files)\nsnid identify data/sn2003jo.dat -o results/ --complete\n\n# Disable plots explicitly (default is to generate plots)\nsnid identify data/sn2003jo.dat -o results/ --no-plots\n```\n\n## Documentation & Support\n\n- **[Complete Documentation](https://fiorenst.github.io/SNID-SAGE/)**\n- **[Quick Start Guide](https://fiorenst.github.io/SNID-SAGE/quickstart/first-analysis/)**\n- **[GUI Manual](https://fiorenst.github.io/SNID-SAGE/gui/interface-overview/)**\n- **[CLI Reference](https://fiorenst.github.io/SNID-SAGE/cli/command-reference/)**\n- **[AI Integration](https://fiorenst.github.io/SNID-SAGE/ai/overview/)**\n- **[Troubleshooting](https://fiorenst.github.io/SNID-SAGE/reference/troubleshooting/)**\n\n## Supported Data Formats\n\n- FITS files (.fits, .fit)\n- ASCII tables (.dat, .txt, .ascii, .asci, .flm)\n- Space-separated values with flexible column detection\n- Custom formats with configurable parsers\n\n## Research & Citation\n\nIf you use SNID SAGE in your research, please cite:\n\n```bibtex\n@software{snid_sage_2025,\n  title={SNID SAGE: A Modern Framework for Interactive Supernova\n         Classification and Spectral Analysis},\n  author={F. Stoppa},\n  year={In Prep, 2025},\n  url={https://github.com/FiorenSt/SNID-SAGE}\n}\n```\n\n## Community & Support\n\n- **[Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues)**\n- **[Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues)**\n- **[Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)**\n- **[Email Support](mailto:fiorenzo.stoppa@physics.ox.ac.uk)**\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n---\n\n<div align=\"center\">\n\n**Made with care for the astronomical community**\n\n[Documentation](https://fiorenst.github.io/SNID-SAGE/) \u2022 [Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues) \u2022 [Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues) \u2022 [Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)\n\n</div>\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "SNID SAGE - SuperNova IDentification with Spectrum Analysis and Guided Enhancement",
    "version": "0.4.0",
    "project_urls": {
        "Bug Reports": "https://github.com/FiorenSt/SNID-SAGE/issues",
        "Documentation": "https://fiorenst.github.io/SNID-SAGE",
        "Download": "https://github.com/FiorenSt/SNID-SAGE/archive/refs/heads/main.zip",
        "Homepage": "https://github.com/FiorenSt/SNID-SAGE",
        "Repository": "https://github.com/FiorenSt/SNID-SAGE.git"
    },
    "split_keywords": [
        "astronomy",
        " supernova",
        " spectrum",
        " analysis",
        " snid",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9d82646190b92bb1a530e9273b6612d174e381989acb88fc6b67c7d6b6ad4171",
                "md5": "8bc042119a19414f5501f7f4532f4fc0",
                "sha256": "3d36d69a29a9a76fc93e34c9323783052e3bcaeff0049b0ed4678607e9991ed3"
            },
            "downloads": -1,
            "filename": "snid_sage-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8bc042119a19414f5501f7f4532f4fc0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 79152267,
            "upload_time": "2025-08-14T00:26:45",
            "upload_time_iso_8601": "2025-08-14T00:26:45.857836Z",
            "url": "https://files.pythonhosted.org/packages/9d/82/646190b92bb1a530e9273b6612d174e381989acb88fc6b67c7d6b6ad4171/snid_sage-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c319f0bbbe77217c1a305b247151225ee1edb4a3652a55be24749be41b69aba7",
                "md5": "d21d17ff64221ec4c89481044134820e",
                "sha256": "83088c5ce78b0c6f535974019c32d61d77e793850920e735159478dcea17097c"
            },
            "downloads": -1,
            "filename": "snid_sage-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d21d17ff64221ec4c89481044134820e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 79155976,
            "upload_time": "2025-08-14T00:26:50",
            "upload_time_iso_8601": "2025-08-14T00:26:50.434231Z",
            "url": "https://files.pythonhosted.org/packages/c3/19/f0bbbe77217c1a305b247151225ee1edb4a3652a55be24749be41b69aba7/snid_sage-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-14 00:26:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "FiorenSt",
    "github_project": "SNID-SAGE",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "snid-sage"
}
        
Elapsed time: 1.25330s