snid-sage


Namesnid-sage JSON
Version 0.1.9 PyPI version JSON
download
home_pageNone
SummarySNID SAGE - SuperNova IDentification with Spectrum Analysis and Guided Enhancement
upload_time2025-07-16 10:46:03
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords astronomy supernova spectrum analysis snid machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SNID SAGE - Advanced Supernova Spectral Analysis

[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
[![Platform](https://img.shields.io/badge/platform-Windows%20%7C%20macOS%20%7C%20Linux-lightgrey.svg)]()

**SNID SAGE** (SuperNova IDentification – Spectral Analysis and Guided Exploration) is your go-to tool for analyzing supernova spectra. It combines an intuitive graphical interface with the original SNID (Blondin & Tonry 2007) cross-correlation techniques, enhanced with a new clustering methodology for classification choice and LLM-powered analysis summaries and interactive chat assistance.

---

![SNID SAGE GUI](snid_sage/images/Screenshot.png)
*SNID SAGE main GUI: intuitive workflow, interactive plotting, and advanced analysis tools.*

---

## Quick Installation

### Option 1: Install from PyPI (Recommended)

The easiest way to install SNID SAGE is directly from PyPI:

```bash
pip install snid-sage
```

### Option 2: Virtual Environment (Recommended for Development)

We recommend using a virtual environment to avoid conflicts with other Python packages. This ensures a clean, isolated installation.

#### Using venv (Python's built-in virtual environment)
```bash
# Create virtual environment
python -m venv snid_env

# Activate environment
# Windows:
snid_env\Scripts\activate
# macOS/Linux:
source snid_env/bin/activate

# Install SNID SAGE
pip install snid-sage
```

#### Using conda
```bash
# Create conda environment
conda create -n snid_sage python=3.10
conda activate snid_sage

# Install SNID SAGE
pip install snid-sage
```

### Option 3: Development Installation

For development or testing the latest features:

```bash
# Install from Test PyPI (development versions)
pip install -i https://test.pypi.org/simple/ snid-sage

# Or install from source
git clone https://github.com/FiorenSt/SNID-SAGE.git
cd SNID-SAGE
pip install -e .
```

**Note:** If you choose global installation, we recommend using `pip install --user` to install in your user directory rather than system-wide.



## Getting Started

### Launch the GUI (Recommended)
```bash
# Using installed entry point
snid-gui
# or
snid-sage
```

### Use the CLI (For automation)
```bash
# Single spectrum analysis (templates auto-discovered)
snid data/sn2003jo.dat --output-dir results/

# Single spectrum analysis with explicit templates
snid identify data/sn2003jo.dat templates/ --output-dir results/

# Batch processing
snid batch "data/*.dat" templates/ --output-dir results/
```



## Documentation & Support

- **[Complete Documentation](docs/)** - Comprehensive guides and tutorials
- **[Quick Start Guide](docs/quickstart/first-analysis.md)** - Your first analysis in 5 minutes
- **[GUI Manual](docs/gui/interface-overview.md)** - Complete interface guide
- **[CLI Reference](docs/cli/command-reference.md)** - All commands and options
- **[AI Integration](docs/ai/overview.md)** - Setting up AI analysis
- **[Troubleshooting](docs/reference/troubleshooting.md)** - Common issues and solutions
- **[FAQ](docs/reference/faq.md)** - Frequently asked questions

## Supported Data Formats

- **FITS files** (.fits, .fit)
- **ASCII tables** (.dat, .txt, .ascii, .asci)
- **Space-separated values** with flexible column detection
- **Custom formats** with configurable parsers

## Research & Citation

If you use SNID SAGE in your research, please cite:

```bibtex
@software{snid_sage_2025,
  title={SNID SAGE: A Modern Framework for Interactive Supernova
         Classification and Spectral Analysis},
  author={F. Stoppa},
  year={In Prep, 2025},
  url={https://github.com/FiorenSt/SNID-SAGE}
}
```

## Community & Support

- **[Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues)** - Found a bug?
- **[Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues)** - Want a new feature?
- **[Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)** - Questions and community chat
- **[Email Support](mailto:fiorenzo.stoppa@physics.ox.ac.uk)** - Direct contact

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

---

<div align="center">

**Made with care for the astronomical community**

[Documentation](docs/) • [Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues) • [Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues) • [Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)

</div>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "snid-sage",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Fiorenzo Stoppa <fiorenzo.stoppa@physics.ox.ac.uk>",
    "keywords": "astronomy, supernova, spectrum, analysis, snid, machine-learning",
    "author": null,
    "author_email": "Fiorenzo Stoppa <fiorenzo.stoppa@physics.ox.ac.uk>",
    "download_url": "https://files.pythonhosted.org/packages/f1/9a/b97608252fb31bc2007d2c87aa1c8a7d947109d9c5ed425f4e863648111e/snid_sage-0.1.9.tar.gz",
    "platform": null,
    "description": "# SNID SAGE - Advanced Supernova Spectral Analysis\n\n[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)\n[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)\n[![Platform](https://img.shields.io/badge/platform-Windows%20%7C%20macOS%20%7C%20Linux-lightgrey.svg)]()\n\n**SNID SAGE** (SuperNova IDentification \u2013 Spectral Analysis and Guided Exploration) is your go-to tool for analyzing supernova spectra. It combines an intuitive graphical interface with the original SNID (Blondin & Tonry 2007) cross-correlation techniques, enhanced with a new clustering methodology for classification choice and LLM-powered analysis summaries and interactive chat assistance.\n\n---\n\n![SNID SAGE GUI](snid_sage/images/Screenshot.png)\n*SNID SAGE main GUI: intuitive workflow, interactive plotting, and advanced analysis tools.*\n\n---\n\n## Quick Installation\n\n### Option 1: Install from PyPI (Recommended)\n\nThe easiest way to install SNID SAGE is directly from PyPI:\n\n```bash\npip install snid-sage\n```\n\n### Option 2: Virtual Environment (Recommended for Development)\n\nWe recommend using a virtual environment to avoid conflicts with other Python packages. This ensures a clean, isolated installation.\n\n#### Using venv (Python's built-in virtual environment)\n```bash\n# Create virtual environment\npython -m venv snid_env\n\n# Activate environment\n# Windows:\nsnid_env\\Scripts\\activate\n# macOS/Linux:\nsource snid_env/bin/activate\n\n# Install SNID SAGE\npip install snid-sage\n```\n\n#### Using conda\n```bash\n# Create conda environment\nconda create -n snid_sage python=3.10\nconda activate snid_sage\n\n# Install SNID SAGE\npip install snid-sage\n```\n\n### Option 3: Development Installation\n\nFor development or testing the latest features:\n\n```bash\n# Install from Test PyPI (development versions)\npip install -i https://test.pypi.org/simple/ snid-sage\n\n# Or install from source\ngit clone https://github.com/FiorenSt/SNID-SAGE.git\ncd SNID-SAGE\npip install -e .\n```\n\n**Note:** If you choose global installation, we recommend using `pip install --user` to install in your user directory rather than system-wide.\n\n\n\n## Getting Started\n\n### Launch the GUI (Recommended)\n```bash\n# Using installed entry point\nsnid-gui\n# or\nsnid-sage\n```\n\n### Use the CLI (For automation)\n```bash\n# Single spectrum analysis (templates auto-discovered)\nsnid data/sn2003jo.dat --output-dir results/\n\n# Single spectrum analysis with explicit templates\nsnid identify data/sn2003jo.dat templates/ --output-dir results/\n\n# Batch processing\nsnid batch \"data/*.dat\" templates/ --output-dir results/\n```\n\n\n\n## Documentation & Support\n\n- **[Complete Documentation](docs/)** - Comprehensive guides and tutorials\n- **[Quick Start Guide](docs/quickstart/first-analysis.md)** - Your first analysis in 5 minutes\n- **[GUI Manual](docs/gui/interface-overview.md)** - Complete interface guide\n- **[CLI Reference](docs/cli/command-reference.md)** - All commands and options\n- **[AI Integration](docs/ai/overview.md)** - Setting up AI analysis\n- **[Troubleshooting](docs/reference/troubleshooting.md)** - Common issues and solutions\n- **[FAQ](docs/reference/faq.md)** - Frequently asked questions\n\n## Supported Data Formats\n\n- **FITS files** (.fits, .fit)\n- **ASCII tables** (.dat, .txt, .ascii, .asci)\n- **Space-separated values** with flexible column detection\n- **Custom formats** with configurable parsers\n\n## Research & Citation\n\nIf you use SNID SAGE in your research, please cite:\n\n```bibtex\n@software{snid_sage_2025,\n  title={SNID SAGE: A Modern Framework for Interactive Supernova\n         Classification and Spectral Analysis},\n  author={F. Stoppa},\n  year={In Prep, 2025},\n  url={https://github.com/FiorenSt/SNID-SAGE}\n}\n```\n\n## Community & Support\n\n- **[Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues)** - Found a bug?\n- **[Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues)** - Want a new feature?\n- **[Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)** - Questions and community chat\n- **[Email Support](mailto:fiorenzo.stoppa@physics.ox.ac.uk)** - Direct contact\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n---\n\n<div align=\"center\">\n\n**Made with care for the astronomical community**\n\n[Documentation](docs/) \u2022 [Report Bug](https://github.com/FiorenSt/SNID-SAGE/issues) \u2022 [Request Feature](https://github.com/FiorenSt/SNID-SAGE/issues) \u2022 [Discussions](https://github.com/FiorenSt/SNID-SAGE/discussions)\n\n</div>\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "SNID SAGE - SuperNova IDentification with Spectrum Analysis and Guided Enhancement",
    "version": "0.1.9",
    "project_urls": {
        "Bug Reports": "https://github.com/FiorenSt/SNID-SAGE/issues",
        "Documentation": "https://fiorenst.github.io/SNID-SAGE",
        "Download": "https://github.com/FiorenSt/SNID-SAGE/archive/refs/heads/main.zip",
        "Homepage": "https://github.com/FiorenSt/SNID-SAGE",
        "Repository": "https://github.com/FiorenSt/SNID-SAGE.git"
    },
    "split_keywords": [
        "astronomy",
        " supernova",
        " spectrum",
        " analysis",
        " snid",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7207e2b018510c197d190515c54f8584c41845e799508c00c34174d61bdc289f",
                "md5": "6a076af71b5f367552fcce1962f53ccf",
                "sha256": "e755d29ffcb5a6606ad905ff11e5913e4376c8f93b742fba2d15e54be31bdc63"
            },
            "downloads": -1,
            "filename": "snid_sage-0.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6a076af71b5f367552fcce1962f53ccf",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 79142957,
            "upload_time": "2025-07-16T10:45:58",
            "upload_time_iso_8601": "2025-07-16T10:45:58.373746Z",
            "url": "https://files.pythonhosted.org/packages/72/07/e2b018510c197d190515c54f8584c41845e799508c00c34174d61bdc289f/snid_sage-0.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f19ab97608252fb31bc2007d2c87aa1c8a7d947109d9c5ed425f4e863648111e",
                "md5": "cc5f54dda1c507d9716ec38f20527ff9",
                "sha256": "e244a9141c4f1df4d2f1e92a5b29f0872bc8cf5f632e80420b04140e9372e9cc"
            },
            "downloads": -1,
            "filename": "snid_sage-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "cc5f54dda1c507d9716ec38f20527ff9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 79126701,
            "upload_time": "2025-07-16T10:46:03",
            "upload_time_iso_8601": "2025-07-16T10:46:03.167478Z",
            "url": "https://files.pythonhosted.org/packages/f1/9a/b97608252fb31bc2007d2c87aa1c8a7d947109d9c5ed425f4e863648111e/snid_sage-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-16 10:46:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "FiorenSt",
    "github_project": "SNID-SAGE",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "snid-sage"
}
        
Elapsed time: 0.46493s