snuggs


Namesnuggs JSON
Version 1.4.7 PyPI version JSON
download
home_pagehttps://github.com/mapbox/snuggs
SummarySnuggs are s-expressions for Numpy
upload_time2019-09-18 18:54:51
maintainer
docs_urlNone
authorSean Gillies
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            ======
snuggs
======

.. image:: https://travis-ci.org/mapbox/snuggs.svg?branch=master
   :target: https://travis-ci.org/mapbox/snuggs

.. image:: https://coveralls.io/repos/mapbox/snuggs/badge.svg
   :target: https://coveralls.io/r/mapbox/snuggs

Snuggs are s-expressions for Numpy

.. code-block:: python

    >>> snuggs.eval("(+ (asarray 1 1) (asarray 2 2))")
    array([3, 3])

Syntax
======

Snuggs wraps Numpy in expressions with the following syntax:

.. code-block::

    expression = "(" (operator | function) *arg ")"
    arg = expression | name | number | string

Examples
========

Addition of two numbers
-----------------------

.. code-block:: python

    import snuggs
    snuggs.eval('(+ 1 2)')
    # 3

Multiplication of a number and an array
---------------------------------------

Arrays can be created using ``asarray``.

.. code-block:: python

    snuggs.eval("(* 3.5 (asarray 1 1))")
    # array([ 3.5,  3.5])

Evaluation context
------------------

Expressions can also refer by name to arrays in a local context.

.. code-block:: python

    snuggs.eval("(+ (asarray 1 1) b)", b=np.array([2, 2]))
    # array([3, 3])

This local context may be provided using keyword arguments (e.g.,
``b=np.array([2, 2])``), or by passing a dictionary that stores
the keys and associated array values. Passing a dictionary, specifically
an ``OrderedDict``, is important when using a function or operator that
references the order in which values have been provided. For example,
the ``read`` function will lookup the `i-th` value passed:

.. code-block:: python

    ctx = OrderedDict((
        ('a', np.array([5, 5])),
        ('b', np.array([2, 2]))
    ))
    snuggs.eval("(- (read 1) (read 2))", ctx)
    # array([3, 3])

Functions and operators
=======================

Arithmetic (``* + / -``) and logical (``< <= == != >= > & |``) operators are
available. Members of the ``numpy`` module such as ``asarray()``, ``mean()``,
and ``where()`` are also available.

.. code-block:: python

    snuggs.eval("(mean (asarray 1 2 4))")
    # 2.3333333333333335

.. code-block:: python

    snuggs.eval("(where (& tt tf) 1 0)",
        tt=numpy.array([True, True]),
        tf=numpy.array([True, False]))
    # array([1, 0])

Higher-order functions
======================

New in snuggs 1.1 are higher-order functions ``map`` and ``partial``.

.. code-block:: python

    snuggs.eval("((partial * 2) 2)")
    # 4

    snuggs.eval('(asarray (map (partial * 2) (asarray 1 2 3)))')
    # array([2, 4, 6])

Performance notes
=================

Snuggs makes simple calculator programs possible. None of the optimizations
of, e.g., `numexpr <https://github.com/pydata/numexpr>`__ (multithreading,
elimination of temporary data, etc) are currently available.

If you're looking to combine Numpy with a more complete Lisp, see
`Hy <https://github.com/hylang/hy>`__:

.. code-block:: clojure

    => (import numpy)
    => (* 2 (.asarray numpy [1 2 3]))
    array([2, 4, 6])



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mapbox/snuggs",
    "name": "snuggs",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Sean Gillies",
    "author_email": "sean@mapbox.com",
    "download_url": "https://files.pythonhosted.org/packages/93/19/0d11ab370735dde61076a0e41644e5593821776e69e3b0344626cfa0e56a/snuggs-1.4.7.tar.gz",
    "platform": "",
    "description": "======\nsnuggs\n======\n\n.. image:: https://travis-ci.org/mapbox/snuggs.svg?branch=master\n   :target: https://travis-ci.org/mapbox/snuggs\n\n.. image:: https://coveralls.io/repos/mapbox/snuggs/badge.svg\n   :target: https://coveralls.io/r/mapbox/snuggs\n\nSnuggs are s-expressions for Numpy\n\n.. code-block:: python\n\n    >>> snuggs.eval(\"(+ (asarray 1 1) (asarray 2 2))\")\n    array([3, 3])\n\nSyntax\n======\n\nSnuggs wraps Numpy in expressions with the following syntax:\n\n.. code-block::\n\n    expression = \"(\" (operator | function) *arg \")\"\n    arg = expression | name | number | string\n\nExamples\n========\n\nAddition of two numbers\n-----------------------\n\n.. code-block:: python\n\n    import snuggs\n    snuggs.eval('(+ 1 2)')\n    # 3\n\nMultiplication of a number and an array\n---------------------------------------\n\nArrays can be created using ``asarray``.\n\n.. code-block:: python\n\n    snuggs.eval(\"(* 3.5 (asarray 1 1))\")\n    # array([ 3.5,  3.5])\n\nEvaluation context\n------------------\n\nExpressions can also refer by name to arrays in a local context.\n\n.. code-block:: python\n\n    snuggs.eval(\"(+ (asarray 1 1) b)\", b=np.array([2, 2]))\n    # array([3, 3])\n\nThis local context may be provided using keyword arguments (e.g.,\n``b=np.array([2, 2])``), or by passing a dictionary that stores\nthe keys and associated array values. Passing a dictionary, specifically\nan ``OrderedDict``, is important when using a function or operator that\nreferences the order in which values have been provided. For example,\nthe ``read`` function will lookup the `i-th` value passed:\n\n.. code-block:: python\n\n    ctx = OrderedDict((\n        ('a', np.array([5, 5])),\n        ('b', np.array([2, 2]))\n    ))\n    snuggs.eval(\"(- (read 1) (read 2))\", ctx)\n    # array([3, 3])\n\nFunctions and operators\n=======================\n\nArithmetic (``* + / -``) and logical (``< <= == != >= > & |``) operators are\navailable. Members of the ``numpy`` module such as ``asarray()``, ``mean()``,\nand ``where()`` are also available.\n\n.. code-block:: python\n\n    snuggs.eval(\"(mean (asarray 1 2 4))\")\n    # 2.3333333333333335\n\n.. code-block:: python\n\n    snuggs.eval(\"(where (& tt tf) 1 0)\",\n        tt=numpy.array([True, True]),\n        tf=numpy.array([True, False]))\n    # array([1, 0])\n\nHigher-order functions\n======================\n\nNew in snuggs 1.1 are higher-order functions ``map`` and ``partial``.\n\n.. code-block:: python\n\n    snuggs.eval(\"((partial * 2) 2)\")\n    # 4\n\n    snuggs.eval('(asarray (map (partial * 2) (asarray 1 2 3)))')\n    # array([2, 4, 6])\n\nPerformance notes\n=================\n\nSnuggs makes simple calculator programs possible. None of the optimizations\nof, e.g., `numexpr <https://github.com/pydata/numexpr>`__ (multithreading,\nelimination of temporary data, etc) are currently available.\n\nIf you're looking to combine Numpy with a more complete Lisp, see\n`Hy <https://github.com/hylang/hy>`__:\n\n.. code-block:: clojure\n\n    => (import numpy)\n    => (* 2 (.asarray numpy [1 2 3]))\n    array([2, 4, 6])\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Snuggs are s-expressions for Numpy",
    "version": "1.4.7",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "3e86bc664526e0aaf579d47a56b5e34e",
                "sha256": "988dde5d4db88e9d71c99457404773dabcc7a1c45971bfbe81900999942d9f07"
            },
            "downloads": -1,
            "filename": "snuggs-1.4.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3e86bc664526e0aaf579d47a56b5e34e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5370,
            "upload_time": "2019-09-18T18:54:49",
            "upload_time_iso_8601": "2019-09-18T18:54:49.829832Z",
            "url": "https://files.pythonhosted.org/packages/cc/0e/d27d6e806d6c0d1a2cfdc5d1f088e42339a0a54a09c3343f7f81ec8947ea/snuggs-1.4.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "74265bada7a08e9d80be9497dfbe47e7",
                "sha256": "501cf113fe3892e14e2fee76da5cd0606b7e149c411c271898e6259ebde2617b"
            },
            "downloads": -1,
            "filename": "snuggs-1.4.7.tar.gz",
            "has_sig": false,
            "md5_digest": "74265bada7a08e9d80be9497dfbe47e7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8196,
            "upload_time": "2019-09-18T18:54:51",
            "upload_time_iso_8601": "2019-09-18T18:54:51.598801Z",
            "url": "https://files.pythonhosted.org/packages/93/19/0d11ab370735dde61076a0e41644e5593821776e69e3b0344626cfa0e56a/snuggs-1.4.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2019-09-18 18:54:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "mapbox",
    "github_project": "snuggs",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "snuggs"
}
        
Elapsed time: 0.02184s