# Sofascrape
A Python library for scraping and interacting with SofaScore APIs to access football statistics, events, and other sports data.
## Installation
```bash
pip install sofascrape
```
## Features
- Easy access to SofaScore API endpoints
- Built-in data formatting and export capabilities (JSON, CSV)
- Context manager support for resource management
- Comprehensive coverage of SofaScore API endpoints
## Usage
### Basic Usage
```python
from sofascrape import SofascrapeClient
# Use context manager for automatic resource management
with SofascrapeClient() as client:
# Get football categories
categories = client.get_sport_categories()
print(categories.data) # Access raw data
# Save as JSON file
categories.json("football_categories.json")
# Save as CSV file
categories.csv("football_categories.csv")
```
### Advanced Usage
```python
from sofascrape import SofascrapeClient
# Initialize client with custom options
client = SofascrapeClient(headless=True, timeout=60000)
try:
client.start() # Manually start the client
# Get live football events
live_events = client.get_live_events()
# Access data directly
for event in live_events:
print(event)
# Get specific tournament standings
standings = client.get_tournament_standings(tournament_id=123, season_id=456)
standings.json("standings.json")
finally:
client.close() # Manually close the client
```
## Available Methods
The library provides access to various SofaScore API endpoints:
- `get_sport_categories()` - Get all available football categories
- `get_live_events()` - Get all live football events
- `get_event_data(event_id)` - Get core data for a specific event
- `get_event_lineups(event_id)` - Get lineups for a specific event
- `get_tournament_standings(tournament_id, season_id)` - Get standings for a tournament
- `get_team_info(team_id)` - Get information about a specific team
- And many more endpoints...
For a complete list of available methods, check the client.py file.
## Response Objects
API responses are wrapped in `ApiResponse` objects that provide:
- Direct access to data via `.data`
- JSON export via `.json([filename])`
- CSV export via `.csv([filename])`
- Dictionary-like access via `[]`
- Iteration support via `iter()`
- Length via `len()`
## License
MIT License. See the [LICENSE](LICENSE) file for more details.
Raw data
{
"_id": null,
"home_page": null,
"name": "sofascrape",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "sofascore, scraping, sports, football, api",
"author": null,
"author_email": "Chumari <dchumari@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ca/6f/97b6bd2bad37ed0d6358b8add3270aae65916e0810067e018fca372e468a/sofascrape-0.1.2.tar.gz",
"platform": null,
"description": "# Sofascrape\r\n\r\nA Python library for scraping and interacting with SofaScore APIs to access football statistics, events, and other sports data.\r\n\r\n## Installation\r\n\r\n```bash\r\npip install sofascrape\r\n```\r\n\r\n## Features\r\n\r\n- Easy access to SofaScore API endpoints\r\n- Built-in data formatting and export capabilities (JSON, CSV)\r\n- Context manager support for resource management\r\n- Comprehensive coverage of SofaScore API endpoints\r\n\r\n## Usage\r\n\r\n### Basic Usage\r\n\r\n```python\r\nfrom sofascrape import SofascrapeClient\r\n\r\n# Use context manager for automatic resource management\r\nwith SofascrapeClient() as client:\r\n # Get football categories\r\n categories = client.get_sport_categories()\r\n print(categories.data) # Access raw data\r\n \r\n # Save as JSON file\r\n categories.json(\"football_categories.json\")\r\n \r\n # Save as CSV file\r\n categories.csv(\"football_categories.csv\")\r\n```\r\n\r\n### Advanced Usage\r\n\r\n```python\r\nfrom sofascrape import SofascrapeClient\r\n\r\n# Initialize client with custom options\r\nclient = SofascrapeClient(headless=True, timeout=60000)\r\n\r\ntry:\r\n client.start() # Manually start the client\r\n \r\n # Get live football events\r\n live_events = client.get_live_events()\r\n \r\n # Access data directly\r\n for event in live_events:\r\n print(event)\r\n \r\n # Get specific tournament standings\r\n standings = client.get_tournament_standings(tournament_id=123, season_id=456)\r\n standings.json(\"standings.json\")\r\n \r\nfinally:\r\n client.close() # Manually close the client\r\n```\r\n\r\n## Available Methods\r\n\r\nThe library provides access to various SofaScore API endpoints:\r\n\r\n- `get_sport_categories()` - Get all available football categories\r\n- `get_live_events()` - Get all live football events\r\n- `get_event_data(event_id)` - Get core data for a specific event\r\n- `get_event_lineups(event_id)` - Get lineups for a specific event\r\n- `get_tournament_standings(tournament_id, season_id)` - Get standings for a tournament\r\n- `get_team_info(team_id)` - Get information about a specific team\r\n- And many more endpoints...\r\n\r\nFor a complete list of available methods, check the client.py file.\r\n\r\n## Response Objects\r\n\r\nAPI responses are wrapped in `ApiResponse` objects that provide:\r\n\r\n- Direct access to data via `.data`\r\n- JSON export via `.json([filename])`\r\n- CSV export via `.csv([filename])`\r\n- Dictionary-like access via `[]`\r\n- Iteration support via `iter()`\r\n- Length via `len()`\r\n\r\n## License\r\n\r\nMIT License. See the [LICENSE](LICENSE) file for more details.\r\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "A Python library for scraping and interacting with SofaScore APIs",
"version": "0.1.2",
"project_urls": {
"Bug Reports": "https://github.com/dchumari/sofascrape/issues",
"Homepage": "https://github.com/dchumari/sofascrape",
"Repository": "https://github.com/dchumari/sofascrape.git"
},
"split_keywords": [
"sofascore",
" scraping",
" sports",
" football",
" api"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5fa41dc025101922d6b1b1ea0ab4ced1c908e8ff4690d5337196bbbe5845a708",
"md5": "4501a16b101421b1f1127a85de9d9e03",
"sha256": "85a7383556563a6475e396282e675d104af8faf0082f30f25978cbd8f067661d"
},
"downloads": -1,
"filename": "sofascrape-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4501a16b101421b1f1127a85de9d9e03",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 8483,
"upload_time": "2025-10-07T16:40:11",
"upload_time_iso_8601": "2025-10-07T16:40:11.749284Z",
"url": "https://files.pythonhosted.org/packages/5f/a4/1dc025101922d6b1b1ea0ab4ced1c908e8ff4690d5337196bbbe5845a708/sofascrape-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ca6f97b6bd2bad37ed0d6358b8add3270aae65916e0810067e018fca372e468a",
"md5": "069d9a8d986dc1e7671783c48b6d6bc3",
"sha256": "35309bf6bf3d4a8ce4472959d96880c6e85c00270d6b20d67e5a3f3f1206652b"
},
"downloads": -1,
"filename": "sofascrape-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "069d9a8d986dc1e7671783c48b6d6bc3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 8942,
"upload_time": "2025-10-07T16:40:12",
"upload_time_iso_8601": "2025-10-07T16:40:12.807680Z",
"url": "https://files.pythonhosted.org/packages/ca/6f/97b6bd2bad37ed0d6358b8add3270aae65916e0810067e018fca372e468a/sofascrape-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-07 16:40:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dchumari",
"github_project": "sofascrape",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "playwright",
"specs": [
[
">=",
"1.30.0"
]
]
},
{
"name": "beautifulsoup4",
"specs": [
[
">=",
"4.11.0"
]
]
},
{
"name": "requests",
"specs": [
[
">=",
"2.28.0"
]
]
}
],
"lcname": "sofascrape"
}