song-metadata-embedder


Namesong-metadata-embedder JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/Billuc/song-metadata-embedder
SummaryA generic tool to embed a song's data into a song file
upload_time2023-06-27 12:29:31
maintainer
docs_urlNone
authorBilluc
requires_python>=3.9,<4.0
licenseMIT
keywords song metadata song metadata metadata embedder python mp3 m4a ogg flac opus
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Song Metadata Embedder

**Embed metadata into your music files, whatever the type**

## Features

- Automatic type detection based on the file extension
    - Currently supported : MP3, M4A, FLAC, OGG (Vorbis), OPUS
- Detection of badly formatted files
- Easy to use, straightforward interface
- Possible to use via DI integration

## Installation

### Pip

```
pip install song-metadata-embedder
```

### Poetry

[Poetry](https://python-poetry.org/) is a Python dependency management and packaging tool. I actually use it for this project.

```
poetry add song-metadata-embedder
```

## Usage

There are 2 ways to use this library : using the SongMetadataEmbedder object or via the DI.

### Using SongMetadataEmbedder

The library exposes the SongMetadataEmbedder class. This class has 1 method : `embed`.

This method detects the type of the file you want to modify and sets the metadata accordingly.

**Example :**

```python
from pathlib import Path
from song_metadata_embedder import SongMetadataEmbedder, SongMetadata

embedder = SongMetadataEmbedder()
path = Path("path/to/file.mp3")
metadata = SongMetadata(...)

embedder.embed(path, metadata)
```

### Using DI

The library also exposes a `BaseMetadataEmbedder` interface and a `add_song_metadata_embedder` function for [Taipan-DI](https://github.com/Billuc/Taipan-DI).

In this function, the embedders are registered as a Pipeline. All you need to do is to resolve the pipeline and execute it.

**Example :**

```python
from song_metadata_embedder import BaseMetadataEmbedder, add_song_metadata_embedder, SongMetadata, EmbedMetadataCommand
from taipan_di import DependencyCollection

services = DependencyCollection()
add_song_metadata_embedder(services)
provider = services.build()

embedder = provider.resolve(BaseMetadataEmbedder)
path = Path("path/to/file.mp3")
metadata = SongMetadata(...)
command = EmbedMetadataCommand(path, metadata)

embedder.exec(command)
```

## Inspirations

This library is partially based on spotDL's [spotify-downloader](https://github.com/spotDL/spotify-downloader).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Billuc/song-metadata-embedder",
    "name": "song-metadata-embedder",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<4.0",
    "maintainer_email": "",
    "keywords": "song metadata,song,metadata,metadata embedder,python,mp3,m4a,ogg,flac,opus",
    "author": "Billuc",
    "author_email": "billuc@hotmail.fr",
    "download_url": "https://files.pythonhosted.org/packages/4c/35/609ebe475e74a29a22b71be61b88e476a2c070002061b24adc4ac193d702/song_metadata_embedder-0.0.1.tar.gz",
    "platform": null,
    "description": "# Song Metadata Embedder\n\n**Embed metadata into your music files, whatever the type**\n\n## Features\n\n- Automatic type detection based on the file extension\n    - Currently supported : MP3, M4A, FLAC, OGG (Vorbis), OPUS\n- Detection of badly formatted files\n- Easy to use, straightforward interface\n- Possible to use via DI integration\n\n## Installation\n\n### Pip\n\n```\npip install song-metadata-embedder\n```\n\n### Poetry\n\n[Poetry](https://python-poetry.org/) is a Python dependency management and packaging tool. I actually use it for this project.\n\n```\npoetry add song-metadata-embedder\n```\n\n## Usage\n\nThere are 2 ways to use this library : using the SongMetadataEmbedder object or via the DI.\n\n### Using SongMetadataEmbedder\n\nThe library exposes the SongMetadataEmbedder class. This class has 1 method : `embed`.\n\nThis method detects the type of the file you want to modify and sets the metadata accordingly.\n\n**Example :**\n\n```python\nfrom pathlib import Path\nfrom song_metadata_embedder import SongMetadataEmbedder, SongMetadata\n\nembedder = SongMetadataEmbedder()\npath = Path(\"path/to/file.mp3\")\nmetadata = SongMetadata(...)\n\nembedder.embed(path, metadata)\n```\n\n### Using DI\n\nThe library also exposes a `BaseMetadataEmbedder` interface and a `add_song_metadata_embedder` function for [Taipan-DI](https://github.com/Billuc/Taipan-DI).\n\nIn this function, the embedders are registered as a Pipeline. All you need to do is to resolve the pipeline and execute it.\n\n**Example :**\n\n```python\nfrom song_metadata_embedder import BaseMetadataEmbedder, add_song_metadata_embedder, SongMetadata, EmbedMetadataCommand\nfrom taipan_di import DependencyCollection\n\nservices = DependencyCollection()\nadd_song_metadata_embedder(services)\nprovider = services.build()\n\nembedder = provider.resolve(BaseMetadataEmbedder)\npath = Path(\"path/to/file.mp3\")\nmetadata = SongMetadata(...)\ncommand = EmbedMetadataCommand(path, metadata)\n\nembedder.exec(command)\n```\n\n## Inspirations\n\nThis library is partially based on spotDL's [spotify-downloader](https://github.com/spotDL/spotify-downloader).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A generic tool to embed a song's data into a song file",
    "version": "0.0.1",
    "project_urls": {
        "Documentation": "https://github.com/Billuc/song-metadata-embedder",
        "Homepage": "https://github.com/Billuc/song-metadata-embedder",
        "Repository": "https://github.com/Billuc/song-metadata-embedder"
    },
    "split_keywords": [
        "song metadata",
        "song",
        "metadata",
        "metadata embedder",
        "python",
        "mp3",
        "m4a",
        "ogg",
        "flac",
        "opus"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d00550e6115515db1990abb8d41da4610ec08acdf043b831111d1b990a23e76e",
                "md5": "c04a37be5faddfc5098fd292ef189c59",
                "sha256": "6f36b85afc0588e6be1558b78443fd50f4098a3d34edf02db1368448cc5e2234"
            },
            "downloads": -1,
            "filename": "song_metadata_embedder-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c04a37be5faddfc5098fd292ef189c59",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<4.0",
            "size": 18252,
            "upload_time": "2023-06-27T12:29:29",
            "upload_time_iso_8601": "2023-06-27T12:29:29.457243Z",
            "url": "https://files.pythonhosted.org/packages/d0/05/50e6115515db1990abb8d41da4610ec08acdf043b831111d1b990a23e76e/song_metadata_embedder-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4c35609ebe475e74a29a22b71be61b88e476a2c070002061b24adc4ac193d702",
                "md5": "26409c51857d3c9f8e072a452b9a2def",
                "sha256": "34c44a3e7281d3b1b28a8e7f1ef203fb23c1b13b8e2b98fa2634e99c425f4226"
            },
            "downloads": -1,
            "filename": "song_metadata_embedder-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "26409c51857d3c9f8e072a452b9a2def",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<4.0",
            "size": 8660,
            "upload_time": "2023-06-27T12:29:31",
            "upload_time_iso_8601": "2023-06-27T12:29:31.083449Z",
            "url": "https://files.pythonhosted.org/packages/4c/35/609ebe475e74a29a22b71be61b88e476a2c070002061b24adc4ac193d702/song_metadata_embedder-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-27 12:29:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Billuc",
    "github_project": "song-metadata-embedder",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "song-metadata-embedder"
}
        
Elapsed time: 0.13402s