# sp_school_data_crunching# SP Ask School Data Crunching
A Python package for analyzing LibraryH3lp chat data for Scholars Portal Ask service. This package provides tools for visualizing and analyzing chat patterns, operator workload, and institutional interactions across Ontario universities.
## Features
- Comprehensive chat analysis across multiple dimensions:
- Time-based analysis (hourly, daily, monthly patterns)
- Operator workload analysis
- School-specific metrics
- Cross-institutional chat flows
- Local vs non-local operator distribution
- Interactive visualizations:
- Time analysis charts
- Operator performance metrics
- Seasonal patterns
- Chat flow chord diagrams
- Heatmaps and distribution plots
- Statistical analysis including:
- Basic chat metrics
- Response time analysis
- Wait time patterns
- Chat duration statistics
- Correlation analysis
## Installation
```bash
pip install sp-ask-school-data-crunching
```
## Dependencies
- sp-ask-school (>= 0.3.9)
- lh3api (>= 0.2.0)
- pandas
- plotly
- scipy
- numpy
## Usage
### Basic Analysis
```python
from sp_ask_school_data_crunching import analyze_school
# Analyze a specific school's data
analyzer = analyze_school(
school_name="University of Toronto",
start_date="2024-01-01",
end_date="2024-12-31"
)
```
### Advanced Usage
```python
from sp_ask_school_data_crunching import SchoolChatAnalytics
# Initialize analyzer
analyzer = SchoolChatAnalytics(
school_name="University of Toronto",
start_date="2024-01-01",
end_date="2024-01-31"
)
# Generate specific visualizations
analyzer.create_time_analysis() # Creates time-based analysis
analyzer.save_individual_visualizations() # Creates individual charts
analyzer.generate_chord_diagram() # Creates chat flow diagram
analyzer.analyze_operator_location() # Analyzes local vs non-local operators
# Get statistics
stats = analyzer.advanced_statistics()
```
## Generated Reports and Visualizations
The package generates several HTML files containing interactive visualizations:
1. `[School_Name]_time_analysis.html`
- Hourly chat distribution
- Day of week distribution
- Chat duration patterns
- Wait time patterns
2. `[School_Name]_operator_analysis.html`
- Operator workload
- Performance metrics
- Response time analysis
3. `[School_Name]_seasonal_analysis.html`
- Monthly patterns
- Yearly trends
- Seasonal variations
4. `[School_Name]_chord_diagram.html`
- Inter-institutional chat flows
- Operator distribution patterns
5. `[School_Name]_dashboard.html`
- Combined visualization dashboard
- Comprehensive metrics view
## License
MIT License
## Authors
Guinsly Mondésir
## Maintained by
Scholars Portal
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## Citing
If you use this package in your research, please cite:
```bibtex
@software{sp_ask_school_data_crunching,
author = {Mondésir, Guinsly},
title = {SP Ask School Data Crunching},
year = {2024},
publisher = {Scholars Portal},
version = {0.1.0}
}
```
## Support
For support or questions, please:
1. Open an issue on GitHub
2. Contact Scholars Portal support
3. Check the documentation
## Changelog
### 0.1.0 (2024-01-01)
- Initial release
- Basic analysis features
- Core visualizations
- Statistical analysis tools
Raw data
{
"_id": null,
"home_page": "https://github.com/scholarsportal/sp_ask_school_data_crunching",
"name": "sp-ask-school-data-crunching",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "libraryh3lp, chat, analytics, scholars portal, ask a librarian, Scholars Portal, OCUL",
"author": "Guinslym",
"author_email": "guinslym@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/8f/eb/2a7c63249c27b9d50b5d717f3ffef584854d5488b059ec87156ae2387c47/sp_ask_school_data_crunching-0.1.2.tar.gz",
"platform": null,
"description": "# sp_school_data_crunching# SP Ask School Data Crunching\n\nA Python package for analyzing LibraryH3lp chat data for Scholars Portal Ask service. This package provides tools for visualizing and analyzing chat patterns, operator workload, and institutional interactions across Ontario universities.\n\n## Features\n\n- Comprehensive chat analysis across multiple dimensions:\n - Time-based analysis (hourly, daily, monthly patterns)\n - Operator workload analysis\n - School-specific metrics\n - Cross-institutional chat flows\n - Local vs non-local operator distribution\n\n- Interactive visualizations:\n - Time analysis charts\n - Operator performance metrics\n - Seasonal patterns\n - Chat flow chord diagrams\n - Heatmaps and distribution plots\n\n- Statistical analysis including:\n - Basic chat metrics\n - Response time analysis\n - Wait time patterns\n - Chat duration statistics\n - Correlation analysis\n\n## Installation\n\n```bash\npip install sp-ask-school-data-crunching\n```\n\n## Dependencies\n\n- sp-ask-school (>= 0.3.9)\n- lh3api (>= 0.2.0)\n- pandas\n- plotly\n- scipy\n- numpy\n\n## Usage\n\n### Basic Analysis\n\n```python\nfrom sp_ask_school_data_crunching import analyze_school\n\n# Analyze a specific school's data\nanalyzer = analyze_school(\n school_name=\"University of Toronto\",\n start_date=\"2024-01-01\",\n end_date=\"2024-12-31\"\n)\n```\n\n### Advanced Usage\n\n```python\nfrom sp_ask_school_data_crunching import SchoolChatAnalytics\n\n# Initialize analyzer\nanalyzer = SchoolChatAnalytics(\n school_name=\"University of Toronto\",\n start_date=\"2024-01-01\",\n end_date=\"2024-01-31\"\n)\n\n# Generate specific visualizations\nanalyzer.create_time_analysis() # Creates time-based analysis\nanalyzer.save_individual_visualizations() # Creates individual charts\nanalyzer.generate_chord_diagram() # Creates chat flow diagram\nanalyzer.analyze_operator_location() # Analyzes local vs non-local operators\n\n# Get statistics\nstats = analyzer.advanced_statistics()\n```\n\n## Generated Reports and Visualizations\n\nThe package generates several HTML files containing interactive visualizations:\n\n1. `[School_Name]_time_analysis.html`\n - Hourly chat distribution\n - Day of week distribution\n - Chat duration patterns\n - Wait time patterns\n\n2. `[School_Name]_operator_analysis.html`\n - Operator workload\n - Performance metrics\n - Response time analysis\n\n3. `[School_Name]_seasonal_analysis.html`\n - Monthly patterns\n - Yearly trends\n - Seasonal variations\n\n4. `[School_Name]_chord_diagram.html`\n - Inter-institutional chat flows\n - Operator distribution patterns\n\n5. `[School_Name]_dashboard.html`\n - Combined visualization dashboard\n - Comprehensive metrics view\n\n## License\n\nMIT License\n\n## Authors\n\nGuinsly Mond\u00e9sir\n\n## Maintained by\n\nScholars Portal\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## Citing\n\nIf you use this package in your research, please cite:\n\n```bibtex\n@software{sp_ask_school_data_crunching,\n author = {Mond\u00e9sir, Guinsly},\n title = {SP Ask School Data Crunching},\n year = {2024},\n publisher = {Scholars Portal},\n version = {0.1.0}\n}\n```\n\n## Support\n\nFor support or questions, please:\n1. Open an issue on GitHub\n2. Contact Scholars Portal support\n3. Check the documentation\n\n## Changelog\n\n### 0.1.0 (2024-01-01)\n- Initial release\n- Basic analysis features\n- Core visualizations\n- Statistical analysis tools",
"bugtrack_url": null,
"license": "MIT",
"summary": "Collection of scripts for data analytics of Ask Data Through LibraryH3lp API - metadata only",
"version": "0.1.2",
"project_urls": {
"Documentation": "https://github.com/scholarsportal/sp_ask_school_data_crunching#readme",
"Homepage": "https://github.com/scholarsportal/sp_ask_school_data_crunching",
"Repository": "https://github.com/scholarsportal/sp_ask_school_data_crunching"
},
"split_keywords": [
"libraryh3lp",
" chat",
" analytics",
" scholars portal",
" ask a librarian",
" scholars portal",
" ocul"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e3db28f7afea054173a7a5eae0eeee124198154e0fc3e40e47b3493939e049d8",
"md5": "de5bbb3cc7ce5a849f4b58be294b9f89",
"sha256": "9d5fe6dbb32a7cd29aa8d8a531e4e2c33cf69424e4f9ad3556c594e8abce2260"
},
"downloads": -1,
"filename": "sp_ask_school_data_crunching-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "de5bbb3cc7ce5a849f4b58be294b9f89",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 19909,
"upload_time": "2024-11-28T19:58:04",
"upload_time_iso_8601": "2024-11-28T19:58:04.717586Z",
"url": "https://files.pythonhosted.org/packages/e3/db/28f7afea054173a7a5eae0eeee124198154e0fc3e40e47b3493939e049d8/sp_ask_school_data_crunching-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8feb2a7c63249c27b9d50b5d717f3ffef584854d5488b059ec87156ae2387c47",
"md5": "2fe539bfc70b3c292d5a5480f0ae11a8",
"sha256": "4e8c3287109b34b709d0514153e45f42ffee5ee0d498563e747c6f00eabc5a39"
},
"downloads": -1,
"filename": "sp_ask_school_data_crunching-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "2fe539bfc70b3c292d5a5480f0ae11a8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 16987,
"upload_time": "2024-11-28T19:58:05",
"upload_time_iso_8601": "2024-11-28T19:58:05.741948Z",
"url": "https://files.pythonhosted.org/packages/8f/eb/2a7c63249c27b9d50b5d717f3ffef584854d5488b059ec87156ae2387c47/sp_ask_school_data_crunching-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-28 19:58:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "scholarsportal",
"github_project": "sp_ask_school_data_crunching",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "sp-ask-school-data-crunching"
}