spacyrerank


Namespacyrerank JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/Vishnunkumar/spacyrerank
SummaryRank phrases and text based on query by leveraging hugging-face models.
upload_time2024-05-17 06:44:03
maintainerNone
docs_urlNone
authorVishnu Nandakumar
requires_pythonNone
licenseMIT license
keywords reranker spacy transformers
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # spacy-rerank
Rank phrases and text based on query by leveraging hugging-face models. Currently, we are only leveraging tiny-bert model.

## Installation and Implementation

- Install the package using the below
```bash
pip install spacyrerank
```

- Code for simple implementation

```python
from spacyrerank.rerank import Reranker

query = "done effort is wasted"
texts = ["work done", "valuable man", "effort wasted", "Great work", "great work mate"]

reranker = Reranker(query, texts=texts)
reranker()

[{'rank': 2, 'text': 'effort wasted', 'similarity-score': 0.877},
 {'rank': 0, 'text': 'work done', 'similarity-score': 0.86},
 {'rank': 3, 'text': 'Great work', 'similarity-score': 0.773},
 {'rank': 4, 'text': 'great work mate', 'similarity-score': 0.757},
 {'rank': 1, 'text': 'valuable man', 'similarity-score': 0.719}]

CPU times: user 331 ms, sys: 76 ms, total: 407 ms
Wall time: 564 ms
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Vishnunkumar/spacyrerank",
    "name": "spacyrerank",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "reranker, spacy, transformers",
    "author": "Vishnu Nandakumar",
    "author_email": "nkumarvishnu25@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/bc/2d/1d5d998c5934fd5472ff000a6fb24fd515e09bdb34c38e00d06f30ea629f/spacyrerank-0.0.6.tar.gz",
    "platform": null,
    "description": "# spacy-rerank\nRank phrases and text based on query by leveraging hugging-face models. Currently, we are only leveraging tiny-bert model.\n\n## Installation and Implementation\n\n- Install the package using the below\n```bash\npip install spacyrerank\n```\n\n- Code for simple implementation\n\n```python\nfrom spacyrerank.rerank import Reranker\n\nquery = \"done effort is wasted\"\ntexts = [\"work done\", \"valuable man\", \"effort wasted\", \"Great work\", \"great work mate\"]\n\nreranker = Reranker(query, texts=texts)\nreranker()\n\n[{'rank': 2, 'text': 'effort wasted', 'similarity-score': 0.877},\n {'rank': 0, 'text': 'work done', 'similarity-score': 0.86},\n {'rank': 3, 'text': 'Great work', 'similarity-score': 0.773},\n {'rank': 4, 'text': 'great work mate', 'similarity-score': 0.757},\n {'rank': 1, 'text': 'valuable man', 'similarity-score': 0.719}]\n\nCPU times: user 331 ms, sys: 76 ms, total: 407 ms\nWall time: 564 ms\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Rank phrases and text based on query by leveraging hugging-face models.",
    "version": "0.0.6",
    "project_urls": {
        "Homepage": "https://github.com/Vishnunkumar/spacyrerank"
    },
    "split_keywords": [
        "reranker",
        " spacy",
        " transformers"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bb9c95910151e714402cd955bbedefd6583fcadd185c9d46551540199b8c8507",
                "md5": "ab8d9e984ee49e23a0acd7de4a0fd686",
                "sha256": "3f4ffe5b34062657072dc7d3d2bf14953f8c9d193e13b8fbf0b40daf84e92a4b"
            },
            "downloads": -1,
            "filename": "spacyrerank-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ab8d9e984ee49e23a0acd7de4a0fd686",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3906,
            "upload_time": "2024-05-17T06:44:02",
            "upload_time_iso_8601": "2024-05-17T06:44:02.062692Z",
            "url": "https://files.pythonhosted.org/packages/bb/9c/95910151e714402cd955bbedefd6583fcadd185c9d46551540199b8c8507/spacyrerank-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bc2d1d5d998c5934fd5472ff000a6fb24fd515e09bdb34c38e00d06f30ea629f",
                "md5": "eddd0208efb135d216fd561356a2256b",
                "sha256": "1e5db9ead33143a492651da16c58640044cd0f956ac576775e73e1d84bc4ea49"
            },
            "downloads": -1,
            "filename": "spacyrerank-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "eddd0208efb135d216fd561356a2256b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3596,
            "upload_time": "2024-05-17T06:44:03",
            "upload_time_iso_8601": "2024-05-17T06:44:03.151265Z",
            "url": "https://files.pythonhosted.org/packages/bc/2d/1d5d998c5934fd5472ff000a6fb24fd515e09bdb34c38e00d06f30ea629f/spacyrerank-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-17 06:44:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Vishnunkumar",
    "github_project": "spacyrerank",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "spacyrerank"
}
        
Elapsed time: 0.58845s