sparse-convolution


Namesparse-convolution JSON
Version 0.1.5 PyPI version JSON
download
home_pagehttps://github.com/RichieHakim/sparse_convolution
SummarySparse convolution in python using Toeplitz convolution matrix multiplication.
upload_time2024-11-12 19:57:37
maintainerNone
docs_urlNone
authorRichard Hakim
requires_pythonNone
licenseMIT
keywords sparse convolution toeplitz python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # sparse_convolution
Sparse convolution in python. \
Uses Toeplitz convolutional matrix multiplication to perform sparse convolution. \
This allows for extremely fast convolution when: 
- The kernel is small (<= 100x100)
- The input array is sparse (<= 1% density)
- The input array is small (<= 1000x1000)
- Many arrays are convolved with the same kernel (large batch size >= 1000)

## Install: 
The package is available on PyPI. \
`pip install sparse_convolution`

<br>

Alternatively, you can install from source. \
`git clone https://github.com/RichieHakim/sparse_convolution` \
`cd sparse_convolution` \
`pip install -e .` 


## Basic usage: 
Convolve a single sparse 2D array with a 2D kernel.
```
import sparse_convolution as sc
import numpy as np
import scipy.sparse

# Create a single sparse matrix
A = scipy.sparse.rand(100, 100, density=0.1)

# Create a dense kernel
B = np.random.rand(3, 3)

# Prepare class
conv = sc.Toeplitz_convolution2d(
    x_shape=A.shape,
    k=B,
    mode='same',
    dtype=np.float32,
)

# Convolve
C = conv(
    x=A,
    batching=False,
).toarray()
```


## Batching usage: 
Convolve multiple sparse 2D arrays with a 2D kernel. \
The input arrays must be reshaped into flattened vectors and stacked into a single sparse array of shape: `(n_arrays, height * width)`. 
```
import sparse_convolution as sc
import numpy as np
import scipy.sparse

# Create multiple sparse matrices
# note that the shape of A will be (3, 100**2)
A = scipy.sparse.vstack([
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
]).tocsr()

# Create a dense kernel
B = np.random.rand(3, 3)

# Prepare class
conv = sc.Toeplitz_convolution2d(
    x_shape=(100, 100),  # note that the input shape here is (100, 100)
    k=B,
    mode='same',
    dtype=np.float32,
)

# Convolve
C = conv(
    x=A,
    batching=True,
)

# Reshape the output back to (3, 100, 100)
C_reshaped = np.stack([c.reshape(100, 100).toarray() for c in C], axis=0)
```

## References
- See: https://stackoverflow.com/a/51865516 and https://github.com/alisaaalehi/convolution_as_multiplication
    for a nice illustration.
- See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.convolution_matrix.html 
    for 1D version.
- See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.matmul_toeplitz.html#scipy.linalg.matmul_toeplitz 
    for potential ways to make this implementation faster.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RichieHakim/sparse_convolution",
    "name": "sparse-convolution",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "sparse convolution Toeplitz python",
    "author": "Richard Hakim",
    "author_email": "richhakim@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/06/dd/6249388abfec5dfff27e7eca2290b4c5499aedf4808caac5798f24bb8ade/sparse_convolution-0.1.5.tar.gz",
    "platform": "Any",
    "description": "# sparse_convolution\nSparse convolution in python. \\\nUses Toeplitz convolutional matrix multiplication to perform sparse convolution. \\\nThis allows for extremely fast convolution when: \n- The kernel is small (<= 100x100)\n- The input array is sparse (<= 1% density)\n- The input array is small (<= 1000x1000)\n- Many arrays are convolved with the same kernel (large batch size >= 1000)\n\n## Install: \nThe package is available on PyPI. \\\n`pip install sparse_convolution`\n\n<br>\n\nAlternatively, you can install from source. \\\n`git clone https://github.com/RichieHakim/sparse_convolution` \\\n`cd sparse_convolution` \\\n`pip install -e .` \n\n\n## Basic usage: \nConvolve a single sparse 2D array with a 2D kernel.\n```\nimport sparse_convolution as sc\nimport numpy as np\nimport scipy.sparse\n\n# Create a single sparse matrix\nA = scipy.sparse.rand(100, 100, density=0.1)\n\n# Create a dense kernel\nB = np.random.rand(3, 3)\n\n# Prepare class\nconv = sc.Toeplitz_convolution2d(\n    x_shape=A.shape,\n    k=B,\n    mode='same',\n    dtype=np.float32,\n)\n\n# Convolve\nC = conv(\n    x=A,\n    batching=False,\n).toarray()\n```\n\n\n## Batching usage: \nConvolve multiple sparse 2D arrays with a 2D kernel. \\\nThe input arrays must be reshaped into flattened vectors and stacked into a single sparse array of shape: `(n_arrays, height * width)`. \n```\nimport sparse_convolution as sc\nimport numpy as np\nimport scipy.sparse\n\n# Create multiple sparse matrices\n# note that the shape of A will be (3, 100**2)\nA = scipy.sparse.vstack([\n    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),\n    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),\n    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),\n]).tocsr()\n\n# Create a dense kernel\nB = np.random.rand(3, 3)\n\n# Prepare class\nconv = sc.Toeplitz_convolution2d(\n    x_shape=(100, 100),  # note that the input shape here is (100, 100)\n    k=B,\n    mode='same',\n    dtype=np.float32,\n)\n\n# Convolve\nC = conv(\n    x=A,\n    batching=True,\n)\n\n# Reshape the output back to (3, 100, 100)\nC_reshaped = np.stack([c.reshape(100, 100).toarray() for c in C], axis=0)\n```\n\n## References\n- See: https://stackoverflow.com/a/51865516 and https://github.com/alisaaalehi/convolution_as_multiplication\n    for a nice illustration.\n- See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.convolution_matrix.html \n    for 1D version.\n- See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.matmul_toeplitz.html#scipy.linalg.matmul_toeplitz \n    for potential ways to make this implementation faster.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Sparse convolution in python using Toeplitz convolution matrix multiplication.",
    "version": "0.1.5",
    "project_urls": {
        "Homepage": "https://github.com/RichieHakim/sparse_convolution"
    },
    "split_keywords": [
        "sparse",
        "convolution",
        "toeplitz",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8952dec6a83d935c210e0928c2d127a6d34ea3f57486e7a20e3d1b98cd11cd0",
                "md5": "c5bd92ed04da621eee4802d0e7d627a5",
                "sha256": "d3bc4714a71d539aeed48529b5f0243f06adff0dec5528a7e8e75fa9b231fe79"
            },
            "downloads": -1,
            "filename": "sparse_convolution-0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c5bd92ed04da621eee4802d0e7d627a5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6197,
            "upload_time": "2024-11-12T19:57:35",
            "upload_time_iso_8601": "2024-11-12T19:57:35.364516Z",
            "url": "https://files.pythonhosted.org/packages/c8/95/2dec6a83d935c210e0928c2d127a6d34ea3f57486e7a20e3d1b98cd11cd0/sparse_convolution-0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "06dd6249388abfec5dfff27e7eca2290b4c5499aedf4808caac5798f24bb8ade",
                "md5": "6eee6b4f714add1b2e6349a80d115a4e",
                "sha256": "2ce8d1375d0770a18bce714208225d242be2bd28e9c2e70b79b73be6c239b822"
            },
            "downloads": -1,
            "filename": "sparse_convolution-0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "6eee6b4f714add1b2e6349a80d115a4e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7843,
            "upload_time": "2024-11-12T19:57:37",
            "upload_time_iso_8601": "2024-11-12T19:57:37.286639Z",
            "url": "https://files.pythonhosted.org/packages/06/dd/6249388abfec5dfff27e7eca2290b4c5499aedf4808caac5798f24bb8ade/sparse_convolution-0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-12 19:57:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RichieHakim",
    "github_project": "sparse_convolution",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "sparse-convolution"
}
        
Elapsed time: 0.41964s