sparsembed


Namesparsembed JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/raphaelsty/sparseembed
SummarySparse Embeddings for Neural Search.
upload_time2023-08-26 16:24:19
maintainer
docs_urlNone
authorRaphael Sourty
requires_python>=3.6
license
keywords neural search information retrieval semantic search sparseembed google research splade
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <h1>SparsEmbed - Splade</h1>
  <p>Neural search</p>
</div>

This repository presents an unofficial replication of both models Splade and SparseEmbed with are state of the art models in information retrieval:

- *[SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking](https://arxiv.org/abs/2107.05720)* authored by Thibault Formal, Benjamin Piwowarski, Stéphane Clinchant, SIGIR 2021.

- *[SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval](https://arxiv.org/abs/2109.10086)* authored by Thibault Formal, Carlos Lassance, Benjamin Piwowarski, Stéphane Clinchant, SIGIR 2022.

- *[SparseEmbed: Learning Sparse Lexical Representations with Contextual Embeddings for Retrieval](https://research.google/pubs/pub52289/)* authored by Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang Zhang, and Mike Bendersky, SIGIR 2023.

**Note:** This project is currently a work in progress. Splade Model is ready to use but I'm working on SparseEmbed. 🔨🧹

## Installation

We can install sparsembed using:

```
pip install sparsembed
```

If we plan to evaluate our model while training install:

```
pip install "sparsembed[eval]"
```

## Retriever

### Splade

We can initialize a Splade Retriever directly from the `splade_v2_max` checkpoint available on HuggingFace. Retrievers are based on PyTorch sparse matrices, stored in memory and accelerated with GPU. We can reduce the number of activated tokens via the `n_tokens` parameter in order to reduce the memory usage of those sparse matrices. 

```python
from sparsembed import model, retrieve
from transformers import AutoModelForMaskedLM, AutoTokenizer

device = "cuda" # cpu

batch_size = 10

# List documents to index:
documents = [
 {'id': 0,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'text': 'Paris is the capital and most populous city of France.'},
 {'id': 1,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'text': "Since the 17th century, Paris has been one of Europe's major centres of science, and arts."},
 {'id': 2,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'text': 'The City of Paris is the centre and seat of government of the region and province of Île-de-France.'
}]

model = model.Splade(
    model=AutoModelForMaskedLM.from_pretrained("naver/splade_v2_max").to(device),
    tokenizer=AutoTokenizer.from_pretrained("naver/splade_v2_max"),
    device=device
)

retriever = retrieve.SpladeRetriever(
    key="id", # Key identifier of each document.
    on=["title", "text"], # Fields to search.
    model=model # Splade retriever.
)

retriever = retriever.add(
    documents=documents,
    batch_size=batch_size,
    k_tokens=256, # Number of activated tokens.
)

retriever(
    ["paris", "Toulouse"], # Queries 
    k_tokens=20, # Maximum number of activated tokens.
    k=100, # Number of documents to retrieve.
    batch_size=batch_size
)
```

```python
[[{'id': 0, 'similarity': 11.481657981872559},
  {'id': 2, 'similarity': 11.294965744018555},
  {'id': 1, 'similarity': 10.059721946716309}],
 [{'id': 0, 'similarity': 0.7379149198532104},
  {'id': 2, 'similarity': 0.6973429918289185},
  {'id': 1, 'similarity': 0.5428210496902466}]]
```

### SparsEmbed 

We can also initialize a retriever dedicated to SparseEmbed model. The checkpoint `naver/splade_v2_max` is not a SparseEmbed trained model so we should train one before using it as a retriever.

```python
from sparsembed import model, retrieve
from transformers import AutoModelForMaskedLM, AutoTokenizer

device = "cuda" # cpu

batch_size = 10

# List documents to index:
documents = [
 {'id': 0,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'text': 'Paris is the capital and most populous city of France.'},
 {'id': 1,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'text': "Since the 17th century, Paris has been one of Europe's major centres of science, and arts."},
 {'id': 2,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'text': 'The City of Paris is the centre and seat of government of the region and province of Île-de-France.'
}]

model = model.SparsEmbed(
    model=AutoModelForMaskedLM.from_pretrained("naver/splade_v2_max").to(device),
    tokenizer=AutoTokenizer.from_pretrained("naver/splade_v2_max"),
    device=device
)

retriever = retrieve.SparsEmbedRetriever(
    key="id", # Key identifier of each document.
    on=["title", "text"], # Fields to search.
    model=model # Splade retriever.
)

retriever = retriever.add(
    documents=documents,
    batch_size=batch_size,
    k_tokens=256, # Number of activated tokens.
)

retriever(
    ["paris", "Toulouse"], # Queries 
    k_tokens=20, # Maximum number of activated tokens.
    k=100, # Number of documents to retrieve.
    batch_size=batch_size
)
```

## Training

Let's fine-tune Splade and SparsEmbed.

### Dataset

Your training dataset must be made out of triples `(anchor, positive, negative)` where anchor is a query, positive is a document that is directly linked to the anchor and negative is a document that is not relevant for the anchor.

```python
X = [
    ("anchor 1", "positive 1", "negative 1"),
    ("anchor 2", "positive 2", "negative 2"),
    ("anchor 3", "positive 3", "negative 3"),
]
```

### Models

Both Splade and SparseEmbed models can be initialized from the `AutoModelForMaskedLM` pretrained models.

```python
from transformers import AutoModelForMaskedLM, AutoTokenizer

model = model.Splade(
    model=AutoModelForMaskedLM.from_pretrained("naver/splade_v2_max").to(device),
    tokenizer=AutoTokenizer.from_pretrained("naver/splade_v2_max"),
    device=device,
)
```

```python
from transformers import AutoModelForMaskedLM, AutoTokenizer

model = model.SparsEmbed(
    model=AutoModelForMaskedLM.from_pretrained("naver/splade_v2_max").to(device),
    tokenizer=AutoTokenizer.from_pretrained("naver/splade_v2_max"),
    embedding_size=64,
    k_tokens=96,
    device=device,
)
```

### Splade

The following PyTorch code snippet illustrates the training loop to fine-tune Splade:

```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, optimization
from sparsembed import model, utils, train, retrieve, losses
import torch

device = "cuda" # cpu or cuda
batch_size = 8
epochs = 1 # Number of times the model will train over the whole dataset.

model = model.Splade(
    model=AutoModelForMaskedLM.from_pretrained("naver/splade_v2_max").to(device),
    tokenizer=AutoTokenizer.from_pretrained("naver/splade_v2_max"),
    device=device
)

optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)

scheduler = optimization.get_linear_schedule_with_warmup(
    optimizer=optimizer, 
    num_warmup_steps=6000,
    num_training_steps=4_000_000,
)

flops_scheduler = losses.FlopsScheduler(weight=1e-4, steps=50_000) 

X = [
    ("anchor 1", "positive 1", "negative 1"),
    ("anchor 2", "positive 2", "negative 2"),
    ("anchor 3", "positive 3", "negative 3"),
]

for anchor, positive, negative in utils.iter(
        X,
        epochs=epochs,
        batch_size=batch_size,
        shuffle=True
    ):
        loss = train.train_splade(
            model=model,
            optimizer=optimizer,
            anchor=anchor,
            positive=positive,
            negative=negative,
            flops_loss_weight=flops_scheduler.get(),
        )

        scheduler.step()
        flops_scheduler.step()

# Save the model.
model.save_pretrained("checkpoint")

# Beir benchmark for evaluation.
documents, queries, qrels = utils.load_beir("scifact", split="test")

retriever = retrieve.SpladeRetriever(
    key="id",
    on=["title", "text"],
    model=model
)

retriever = retriever.add(
    documents=documents,
    batch_size=batch_size,
    k_tokens=96,
)

utils.evaluate(
    retriever=retriever,
    batch_size=batch_size,
    qrels=qrels,
    queries=queries,
    k=100,
    k_tokens=96,
    metrics=["map", "ndcg@10", "ndcg@10", "recall@10", "hits@10"]
)
```

After having saved the model with `save_pretrained`, we can load the checkpoint using:

```python
from sparsembed import model

device = "cuda"

model = model.Splade(
    model_name_or_path="checkpoint",
    device=device,
)
```

## SparsEmbed

The following PyTorch code snippet illustrates the training loop to fine-tune SparseEmbed:

```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, optimization
from sparsembed import model, utils, train, retrieve, losses
import torch

device = "cuda" # cpu or cuda
batch_size = 8
epochs = 1 # Number of times the model will train over the whole dataset.

model = model.SparsEmbed(
    model=AutoModelForMaskedLM.from_pretrained("distilbert-base-uncased").to(device),
    tokenizer=AutoTokenizer.from_pretrained("distilbert-base-uncased"),
    device=device
)

optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)

scheduler = optimization.get_linear_schedule_with_warmup(
    optimizer=optimizer, 
    num_warmup_steps=6000, # Number of warmup steps.
    num_training_steps=4_000_000 # Length training set.
)

flops_scheduler = losses.FlopsScheduler(weight=1e-4, steps=50_000)

X = [
    ("anchor 1", "positive 1", "negative 1"),
    ("anchor 2", "positive 2", "negative 2"),
    ("anchor 3", "positive 3", "negative 3"),
]

for anchor, positive, negative in utils.iter(
        X,
        epochs=epochs,
        batch_size=batch_size,
        shuffle=True
    ):
        loss = train.train_sparsembed(
            model=model,
            optimizer=optimizer,
            k_tokens=96,
            anchor=anchor,
            positive=positive,
            negative=negative,
            flops_loss_weight=flops_scheduler.get(),
            sparse_loss_weight=0.1,
        )

        scheduler.step()
        flops_scheduler.step()

# Save the model.
model.save_pretrained("checkpoint")

# Beir benchmark for evaluation.
documents, queries, qrels = utils.load_beir("scifact", split="test")

retriever = retrieve.SparsEmbedRetriever(
    key="id",
    on=["title", "text"],
    model=model
)

retriever = retriever.add(
    documents=documents,
    k_tokens=96,
    batch_size=batch_size
)

utils.evaluate(
    retriever=retriever,
    batch_size=batch_size,
    qrels=qrels,
    queries=queries,
    k=100,
    k_tokens=96,
    metrics=["map", "ndcg@10", "ndcg@10", "recall@10", "hits@10"]
)
```

After having saved the model with `save_pretrained`, we can load the checkpoint using:

```python
from sparsembed import model

device = "cuda"

model = model.SparsEmbed(
    model_name_or_path="checkpoint",
    device=device,
)
```

## Utils

We can get the activated tokens / embeddings of a sentence with:

```python
model.encode(["deep learning, information retrieval, sparse models"])
```

We can evaluate similarities between pairs of queries and documents without the use of a retriever: 

```python
model.scores(
    queries=["Query A", "Query B"], 
    documents=["Document A", "Document B"],
    batch_size=32,
)
```

```python
tensor([5.1449, 9.1194])
```

Wen can visualize activated tokens:

```python
model.decode(**model.encode(["deep learning, information retrieval, sparse models"]))
```

```python
['deep sparse model retrieval information models depth fuzzy learning dense poor memory recall processing reading lacy include remember knowledge training heavy retrieve guide vague type small learn data']
```

## Benchmarks

Work in progress.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/raphaelsty/sparseembed",
    "name": "sparsembed",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "neural search,information retrieval,semantic search,SparseEmbed,Google Research,SPLADE",
    "author": "Raphael Sourty",
    "author_email": "raphael.sourty@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/11/3f/11aedc86d1839b24199114299a33f0d4faffeced2c7228b4063b8884dbd0/sparsembed-0.1.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <h1>SparsEmbed - Splade</h1>\n  <p>Neural search</p>\n</div>\n\nThis repository presents an unofficial replication of both models Splade and SparseEmbed with are state of the art models in information retrieval:\n\n- *[SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking](https://arxiv.org/abs/2107.05720)* authored by Thibault Formal, Benjamin Piwowarski, St\u00e9phane Clinchant, SIGIR 2021.\n\n- *[SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval](https://arxiv.org/abs/2109.10086)* authored by Thibault Formal, Carlos Lassance, Benjamin Piwowarski, St\u00e9phane Clinchant, SIGIR 2022.\n\n- *[SparseEmbed: Learning Sparse Lexical Representations with Contextual Embeddings for Retrieval](https://research.google/pubs/pub52289/)* authored by Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang Zhang, and Mike Bendersky, SIGIR 2023.\n\n**Note:** This project is currently a work in progress. Splade Model is ready to use but I'm working on SparseEmbed. \ud83d\udd28\ud83e\uddf9\n\n## Installation\n\nWe can install sparsembed using:\n\n```\npip install sparsembed\n```\n\nIf we plan to evaluate our model while training install:\n\n```\npip install \"sparsembed[eval]\"\n```\n\n## Retriever\n\n### Splade\n\nWe can initialize a Splade Retriever directly from the `splade_v2_max` checkpoint available on HuggingFace. Retrievers are based on PyTorch sparse matrices, stored in memory and accelerated with GPU. We can reduce the number of activated tokens via the `n_tokens` parameter in order to reduce the memory usage of those sparse matrices. \n\n```python\nfrom sparsembed import model, retrieve\nfrom transformers import AutoModelForMaskedLM, AutoTokenizer\n\ndevice = \"cuda\" # cpu\n\nbatch_size = 10\n\n# List documents to index:\ndocuments = [\n {'id': 0,\n  'title': 'Paris',\n  'url': 'https://en.wikipedia.org/wiki/Paris',\n  'text': 'Paris is the capital and most populous city of France.'},\n {'id': 1,\n  'title': 'Paris',\n  'url': 'https://en.wikipedia.org/wiki/Paris',\n  'text': \"Since the 17th century, Paris has been one of Europe's major centres of science, and arts.\"},\n {'id': 2,\n  'title': 'Paris',\n  'url': 'https://en.wikipedia.org/wiki/Paris',\n  'text': 'The City of Paris is the centre and seat of government of the region and province of \u00cele-de-France.'\n}]\n\nmodel = model.Splade(\n    model=AutoModelForMaskedLM.from_pretrained(\"naver/splade_v2_max\").to(device),\n    tokenizer=AutoTokenizer.from_pretrained(\"naver/splade_v2_max\"),\n    device=device\n)\n\nretriever = retrieve.SpladeRetriever(\n    key=\"id\", # Key identifier of each document.\n    on=[\"title\", \"text\"], # Fields to search.\n    model=model # Splade retriever.\n)\n\nretriever = retriever.add(\n    documents=documents,\n    batch_size=batch_size,\n    k_tokens=256, # Number of activated tokens.\n)\n\nretriever(\n    [\"paris\", \"Toulouse\"], # Queries \n    k_tokens=20, # Maximum number of activated tokens.\n    k=100, # Number of documents to retrieve.\n    batch_size=batch_size\n)\n```\n\n```python\n[[{'id': 0, 'similarity': 11.481657981872559},\n  {'id': 2, 'similarity': 11.294965744018555},\n  {'id': 1, 'similarity': 10.059721946716309}],\n [{'id': 0, 'similarity': 0.7379149198532104},\n  {'id': 2, 'similarity': 0.6973429918289185},\n  {'id': 1, 'similarity': 0.5428210496902466}]]\n```\n\n### SparsEmbed \n\nWe can also initialize a retriever dedicated to SparseEmbed model. The checkpoint `naver/splade_v2_max` is not a SparseEmbed trained model so we should train one before using it as a retriever.\n\n```python\nfrom sparsembed import model, retrieve\nfrom transformers import AutoModelForMaskedLM, AutoTokenizer\n\ndevice = \"cuda\" # cpu\n\nbatch_size = 10\n\n# List documents to index:\ndocuments = [\n {'id': 0,\n  'title': 'Paris',\n  'url': 'https://en.wikipedia.org/wiki/Paris',\n  'text': 'Paris is the capital and most populous city of France.'},\n {'id': 1,\n  'title': 'Paris',\n  'url': 'https://en.wikipedia.org/wiki/Paris',\n  'text': \"Since the 17th century, Paris has been one of Europe's major centres of science, and arts.\"},\n {'id': 2,\n  'title': 'Paris',\n  'url': 'https://en.wikipedia.org/wiki/Paris',\n  'text': 'The City of Paris is the centre and seat of government of the region and province of \u00cele-de-France.'\n}]\n\nmodel = model.SparsEmbed(\n    model=AutoModelForMaskedLM.from_pretrained(\"naver/splade_v2_max\").to(device),\n    tokenizer=AutoTokenizer.from_pretrained(\"naver/splade_v2_max\"),\n    device=device\n)\n\nretriever = retrieve.SparsEmbedRetriever(\n    key=\"id\", # Key identifier of each document.\n    on=[\"title\", \"text\"], # Fields to search.\n    model=model # Splade retriever.\n)\n\nretriever = retriever.add(\n    documents=documents,\n    batch_size=batch_size,\n    k_tokens=256, # Number of activated tokens.\n)\n\nretriever(\n    [\"paris\", \"Toulouse\"], # Queries \n    k_tokens=20, # Maximum number of activated tokens.\n    k=100, # Number of documents to retrieve.\n    batch_size=batch_size\n)\n```\n\n## Training\n\nLet's fine-tune Splade and SparsEmbed.\n\n### Dataset\n\nYour training dataset must be made out of triples `(anchor, positive, negative)` where anchor is a query, positive is a document that is directly linked to the anchor and negative is a document that is not relevant for the anchor.\n\n```python\nX = [\n    (\"anchor 1\", \"positive 1\", \"negative 1\"),\n    (\"anchor 2\", \"positive 2\", \"negative 2\"),\n    (\"anchor 3\", \"positive 3\", \"negative 3\"),\n]\n```\n\n### Models\n\nBoth Splade and SparseEmbed models can be initialized from the `AutoModelForMaskedLM` pretrained models.\n\n```python\nfrom transformers import AutoModelForMaskedLM, AutoTokenizer\n\nmodel = model.Splade(\n    model=AutoModelForMaskedLM.from_pretrained(\"naver/splade_v2_max\").to(device),\n    tokenizer=AutoTokenizer.from_pretrained(\"naver/splade_v2_max\"),\n    device=device,\n)\n```\n\n```python\nfrom transformers import AutoModelForMaskedLM, AutoTokenizer\n\nmodel = model.SparsEmbed(\n    model=AutoModelForMaskedLM.from_pretrained(\"naver/splade_v2_max\").to(device),\n    tokenizer=AutoTokenizer.from_pretrained(\"naver/splade_v2_max\"),\n    embedding_size=64,\n    k_tokens=96,\n    device=device,\n)\n```\n\n### Splade\n\nThe following PyTorch code snippet illustrates the training loop to fine-tune Splade:\n\n```python\nfrom transformers import AutoModelForMaskedLM, AutoTokenizer, optimization\nfrom sparsembed import model, utils, train, retrieve, losses\nimport torch\n\ndevice = \"cuda\" # cpu or cuda\nbatch_size = 8\nepochs = 1 # Number of times the model will train over the whole dataset.\n\nmodel = model.Splade(\n    model=AutoModelForMaskedLM.from_pretrained(\"naver/splade_v2_max\").to(device),\n    tokenizer=AutoTokenizer.from_pretrained(\"naver/splade_v2_max\"),\n    device=device\n)\n\noptimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)\n\nscheduler = optimization.get_linear_schedule_with_warmup(\n    optimizer=optimizer, \n    num_warmup_steps=6000,\n    num_training_steps=4_000_000,\n)\n\nflops_scheduler = losses.FlopsScheduler(weight=1e-4, steps=50_000) \n\nX = [\n    (\"anchor 1\", \"positive 1\", \"negative 1\"),\n    (\"anchor 2\", \"positive 2\", \"negative 2\"),\n    (\"anchor 3\", \"positive 3\", \"negative 3\"),\n]\n\nfor anchor, positive, negative in utils.iter(\n        X,\n        epochs=epochs,\n        batch_size=batch_size,\n        shuffle=True\n    ):\n        loss = train.train_splade(\n            model=model,\n            optimizer=optimizer,\n            anchor=anchor,\n            positive=positive,\n            negative=negative,\n            flops_loss_weight=flops_scheduler.get(),\n        )\n\n        scheduler.step()\n        flops_scheduler.step()\n\n# Save the model.\nmodel.save_pretrained(\"checkpoint\")\n\n# Beir benchmark for evaluation.\ndocuments, queries, qrels = utils.load_beir(\"scifact\", split=\"test\")\n\nretriever = retrieve.SpladeRetriever(\n    key=\"id\",\n    on=[\"title\", \"text\"],\n    model=model\n)\n\nretriever = retriever.add(\n    documents=documents,\n    batch_size=batch_size,\n    k_tokens=96,\n)\n\nutils.evaluate(\n    retriever=retriever,\n    batch_size=batch_size,\n    qrels=qrels,\n    queries=queries,\n    k=100,\n    k_tokens=96,\n    metrics=[\"map\", \"ndcg@10\", \"ndcg@10\", \"recall@10\", \"hits@10\"]\n)\n```\n\nAfter having saved the model with `save_pretrained`, we can load the checkpoint using:\n\n```python\nfrom sparsembed import model\n\ndevice = \"cuda\"\n\nmodel = model.Splade(\n    model_name_or_path=\"checkpoint\",\n    device=device,\n)\n```\n\n## SparsEmbed\n\nThe following PyTorch code snippet illustrates the training loop to fine-tune SparseEmbed:\n\n```python\nfrom transformers import AutoModelForMaskedLM, AutoTokenizer, optimization\nfrom sparsembed import model, utils, train, retrieve, losses\nimport torch\n\ndevice = \"cuda\" # cpu or cuda\nbatch_size = 8\nepochs = 1 # Number of times the model will train over the whole dataset.\n\nmodel = model.SparsEmbed(\n    model=AutoModelForMaskedLM.from_pretrained(\"distilbert-base-uncased\").to(device),\n    tokenizer=AutoTokenizer.from_pretrained(\"distilbert-base-uncased\"),\n    device=device\n)\n\noptimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)\n\nscheduler = optimization.get_linear_schedule_with_warmup(\n    optimizer=optimizer, \n    num_warmup_steps=6000, # Number of warmup steps.\n    num_training_steps=4_000_000 # Length training set.\n)\n\nflops_scheduler = losses.FlopsScheduler(weight=1e-4, steps=50_000)\n\nX = [\n    (\"anchor 1\", \"positive 1\", \"negative 1\"),\n    (\"anchor 2\", \"positive 2\", \"negative 2\"),\n    (\"anchor 3\", \"positive 3\", \"negative 3\"),\n]\n\nfor anchor, positive, negative in utils.iter(\n        X,\n        epochs=epochs,\n        batch_size=batch_size,\n        shuffle=True\n    ):\n        loss = train.train_sparsembed(\n            model=model,\n            optimizer=optimizer,\n            k_tokens=96,\n            anchor=anchor,\n            positive=positive,\n            negative=negative,\n            flops_loss_weight=flops_scheduler.get(),\n            sparse_loss_weight=0.1,\n        )\n\n        scheduler.step()\n        flops_scheduler.step()\n\n# Save the model.\nmodel.save_pretrained(\"checkpoint\")\n\n# Beir benchmark for evaluation.\ndocuments, queries, qrels = utils.load_beir(\"scifact\", split=\"test\")\n\nretriever = retrieve.SparsEmbedRetriever(\n    key=\"id\",\n    on=[\"title\", \"text\"],\n    model=model\n)\n\nretriever = retriever.add(\n    documents=documents,\n    k_tokens=96,\n    batch_size=batch_size\n)\n\nutils.evaluate(\n    retriever=retriever,\n    batch_size=batch_size,\n    qrels=qrels,\n    queries=queries,\n    k=100,\n    k_tokens=96,\n    metrics=[\"map\", \"ndcg@10\", \"ndcg@10\", \"recall@10\", \"hits@10\"]\n)\n```\n\nAfter having saved the model with `save_pretrained`, we can load the checkpoint using:\n\n```python\nfrom sparsembed import model\n\ndevice = \"cuda\"\n\nmodel = model.SparsEmbed(\n    model_name_or_path=\"checkpoint\",\n    device=device,\n)\n```\n\n## Utils\n\nWe can get the activated tokens / embeddings of a sentence with:\n\n```python\nmodel.encode([\"deep learning, information retrieval, sparse models\"])\n```\n\nWe can evaluate similarities between pairs of queries and documents without the use of a retriever: \n\n```python\nmodel.scores(\n    queries=[\"Query A\", \"Query B\"], \n    documents=[\"Document A\", \"Document B\"],\n    batch_size=32,\n)\n```\n\n```python\ntensor([5.1449, 9.1194])\n```\n\nWen can visualize activated tokens:\n\n```python\nmodel.decode(**model.encode([\"deep learning, information retrieval, sparse models\"]))\n```\n\n```python\n['deep sparse model retrieval information models depth fuzzy learning dense poor memory recall processing reading lacy include remember knowledge training heavy retrieve guide vague type small learn data']\n```\n\n## Benchmarks\n\nWork in progress.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Sparse Embeddings for Neural Search.",
    "version": "0.1.1",
    "project_urls": {
        "Download": "https://github.com/user/sparseembed/archive/v_01.tar.gz",
        "Homepage": "https://github.com/raphaelsty/sparseembed"
    },
    "split_keywords": [
        "neural search",
        "information retrieval",
        "semantic search",
        "sparseembed",
        "google research",
        "splade"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "113f11aedc86d1839b24199114299a33f0d4faffeced2c7228b4063b8884dbd0",
                "md5": "a55cc21a0456d4ab2cbbb6394116f00c",
                "sha256": "5fa23560eb168e404e64cbf22db6ac6cdd6e38817df68fe5bf3dbb0abf10e335"
            },
            "downloads": -1,
            "filename": "sparsembed-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "a55cc21a0456d4ab2cbbb6394116f00c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 19022,
            "upload_time": "2023-08-26T16:24:19",
            "upload_time_iso_8601": "2023-08-26T16:24:19.903713Z",
            "url": "https://files.pythonhosted.org/packages/11/3f/11aedc86d1839b24199114299a33f0d4faffeced2c7228b4063b8884dbd0/sparsembed-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-26 16:24:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "raphaelsty",
    "github_project": "sparseembed",
    "github_not_found": true,
    "lcname": "sparsembed"
}
        
Elapsed time: 0.22918s