# Speedy OpenAI
[![PyPI version](https://badge.fury.io/py/speedy-openai.svg)](https://badge.fury.io/py/speedy-openai)
[![Python](https://img.shields.io/pypi/pyversions/speedy-openai.svg)](https://pypi.org/project/speedy-openai/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
A high-performance, asynchronous Python client for the OpenAI API with built-in rate limiting and concurrency control.
## Features
- ⚡ Asynchronous request handling for optimal performance
- 🔄 Built-in rate limiting for both requests and tokens
- 🎛️ Configurable concurrency control
- 🔁 Automatic retry mechanism with backoff
- 📊 Progress tracking for batch requests
- 🎯 Token counting and management
- 📝 Comprehensive logging
## Installation
```bash
pip install speedy-openai
```
## Quick Start
```python
import asyncio
from speedy_openai import OpenAIClient
async def main():
# Initialize the client
client = OpenAIClient(
api_key="your-api-key",
max_requests_per_min=5000, # Optional: default 5000
max_tokens_per_min=15000000, # Optional: default 15M
max_concurrent_requests=250 # Optional: default 250
)
# Single request
request = {
"custom_id": "req1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hello!"}]
}
}
response = await client.process_request(request)
# Batch requests
requests = [request, request] # List of requests
responses = await client.process_batch(requests)
if __name__ == "__main__":
asyncio.run(main())
```
## Configuration Options
| Parameter | Default | Description |
|-----------|---------|-------------|
| `api_key` | Required | Your OpenAI API key |
| `max_requests_per_min` | 5000 | Maximum API requests per minute |
| `max_tokens_per_min` | 15000000 | Maximum tokens per minute |
| `max_concurrent_requests` | 250 | Maximum concurrent requests |
| `max_retries` | 5 | Maximum retry attempts |
| `max_sleep_time` | 60 | Maximum sleep time between retries (seconds) |
## Features in Detail
### Rate Limiting
The client includes a sophisticated rate limiter that manages both request frequency and token usage:
- Automatically tracks remaining requests and tokens
- Updates limits from API response headers
- Implements waiting periods when limits are reached
- Supports dynamic limit adjustments
### Concurrency Control
- Manages concurrent requests using asyncio semaphores
- Prevents overwhelming the API with too many simultaneous requests
- Configurable maximum concurrent requests
### Retry Mechanism
Built-in retry logic for handling common API errors:
- Automatic retries with fixed wait times
- Configurable maximum retry attempts
- Specific exception handling for API-related errors
### Progress Tracking
Batch requests include:
- Progress bar visualization using tqdm
- Processing time logging
- Detailed success/failure reporting
## Error Handling
The client includes comprehensive error handling:
- API response validation
- Rate limit handling
- Network error recovery
- Invalid request detection
## Requirements
- Python 3.7+
- aiohttp
- tiktoken
- tenacity
- tqdm
- loguru
- pydantic
## Common Use Cases
### 1. Chat Completion with GPT-4
```python
import asyncio
from speedy_openai import OpenAIClient
async def chat_with_gpt4():
client = OpenAIClient(api_key="your-api-key")
request = {
"custom_id": "chat-1",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": "gpt-4",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain quantum computing in simple terms."}
],
"temperature": 0.7
}
}
response = await client.process_request(request)
print(response["response"]["choices"][0]["message"]["content"])
asyncio.run(chat_with_gpt4())
```
### 2. Batch Processing Multiple Conversations
```python
async def process_multiple_conversations():
client = OpenAIClient(api_key="your-api-key")
conversations = [
{"role": "user", "content": "What is AI?"},
{"role": "user", "content": "Explain machine learning."},
{"role": "user", "content": "What is deep learning?"}
]
requests = [
{
"custom_id": f"batch-{i}",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": "gpt-3.5-turbo",
"messages": [conv],
"temperature": 0.7
}
}
for i, conv in enumerate(conversations)
]
responses = await client.process_batch(requests)
return responses
```
## Testing
The project uses pytest for testing. To run the tests:
1. Clone the repository:
```bash
git clone https://github.com/yourusername/speedy-openai.git
cd speedy-openai
```
2. Install development dependencies:
```bash
poetry install
```
3. Run tests:
```bash
poetry run pytest
```
### Test Structure
The test suite includes:
- Unit tests for core functionality
- Integration tests for API interactions
- Rate limiting tests
- Concurrency tests
- Error handling tests
### Running Specific Tests
Run specific test categories:
```bash
# Run only rate limiter tests
poetry run pytest tests/test_rate_limiter.py
# Run only client tests
poetry run pytest tests/test_client.py
# Run with verbose output
poetry run pytest -v
# Run with coverage report
poetry run pytest --cov=speedy_openai
```
### Writing Tests
When contributing new features, please ensure:
- All new features have corresponding tests
- Test coverage remains above 80%
- Tests are properly documented
- Both success and failure cases are covered
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## Support
For issues, questions, or contributions, please create an issue in the GitHub repository.
Raw data
{
"_id": null,
"home_page": "https://github.com/lucafirefox/speedy-openai",
"name": "speedy-openai",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.9",
"maintainer_email": null,
"keywords": "openai, async, aiohttp, api",
"author": "Luca Ferrario",
"author_email": "lucaferrario199@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/61/a3/6f587aba5087453f1f4a02a36194869337b4aba60e0ce4d8c60f6308223b/speedy_openai-0.2.0.tar.gz",
"platform": null,
"description": "# Speedy OpenAI\n\n[![PyPI version](https://badge.fury.io/py/speedy-openai.svg)](https://badge.fury.io/py/speedy-openai)\n[![Python](https://img.shields.io/pypi/pyversions/speedy-openai.svg)](https://pypi.org/project/speedy-openai/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\n\nA high-performance, asynchronous Python client for the OpenAI API with built-in rate limiting and concurrency control.\n\n## Features\n\n- \u26a1 Asynchronous request handling for optimal performance\n- \ud83d\udd04 Built-in rate limiting for both requests and tokens\n- \ud83c\udf9b\ufe0f Configurable concurrency control\n- \ud83d\udd01 Automatic retry mechanism with backoff\n- \ud83d\udcca Progress tracking for batch requests\n- \ud83c\udfaf Token counting and management\n- \ud83d\udcdd Comprehensive logging\n\n## Installation\n\n```bash\npip install speedy-openai\n```\n\n## Quick Start\n\n```python\nimport asyncio\nfrom speedy_openai import OpenAIClient\n\nasync def main():\n # Initialize the client\n client = OpenAIClient(\n api_key=\"your-api-key\",\n max_requests_per_min=5000, # Optional: default 5000\n max_tokens_per_min=15000000, # Optional: default 15M\n max_concurrent_requests=250 # Optional: default 250\n )\n\n # Single request\n request = {\n \"custom_id\": \"req1\",\n \"method\": \"POST\",\n \"url\": \"/v1/chat/completions\",\n \"body\": {\n \"model\": \"gpt-3.5-turbo\",\n \"messages\": [{\"role\": \"user\", \"content\": \"Hello!\"}]\n }\n }\n \n response = await client.process_request(request)\n\n # Batch requests\n requests = [request, request] # List of requests\n responses = await client.process_batch(requests)\n\nif __name__ == \"__main__\":\n asyncio.run(main())\n```\n\n## Configuration Options\n\n| Parameter | Default | Description |\n|-----------|---------|-------------|\n| `api_key` | Required | Your OpenAI API key |\n| `max_requests_per_min` | 5000 | Maximum API requests per minute |\n| `max_tokens_per_min` | 15000000 | Maximum tokens per minute |\n| `max_concurrent_requests` | 250 | Maximum concurrent requests |\n| `max_retries` | 5 | Maximum retry attempts |\n| `max_sleep_time` | 60 | Maximum sleep time between retries (seconds) |\n\n## Features in Detail\n\n### Rate Limiting\n\nThe client includes a sophisticated rate limiter that manages both request frequency and token usage:\n- Automatically tracks remaining requests and tokens\n- Updates limits from API response headers\n- Implements waiting periods when limits are reached\n- Supports dynamic limit adjustments\n\n### Concurrency Control\n\n- Manages concurrent requests using asyncio semaphores\n- Prevents overwhelming the API with too many simultaneous requests\n- Configurable maximum concurrent requests\n\n### Retry Mechanism\n\nBuilt-in retry logic for handling common API errors:\n- Automatic retries with fixed wait times\n- Configurable maximum retry attempts\n- Specific exception handling for API-related errors\n\n### Progress Tracking\n\nBatch requests include:\n- Progress bar visualization using tqdm\n- Processing time logging\n- Detailed success/failure reporting\n\n## Error Handling\n\nThe client includes comprehensive error handling:\n- API response validation\n- Rate limit handling\n- Network error recovery\n- Invalid request detection\n\n## Requirements\n\n- Python 3.7+\n- aiohttp\n- tiktoken\n- tenacity\n- tqdm\n- loguru\n- pydantic\n\n## Common Use Cases\n\n### 1. Chat Completion with GPT-4\n\n```python\nimport asyncio\nfrom speedy_openai import OpenAIClient\n\nasync def chat_with_gpt4():\n client = OpenAIClient(api_key=\"your-api-key\")\n \n request = {\n \"custom_id\": \"chat-1\",\n \"method\": \"POST\",\n \"url\": \"/v1/chat/completions\",\n \"body\": {\n \"model\": \"gpt-4\",\n \"messages\": [\n {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms.\"}\n ],\n \"temperature\": 0.7\n }\n }\n \n response = await client.process_request(request)\n print(response[\"response\"][\"choices\"][0][\"message\"][\"content\"])\n\nasyncio.run(chat_with_gpt4())\n```\n\n### 2. Batch Processing Multiple Conversations\n\n```python\nasync def process_multiple_conversations():\n client = OpenAIClient(api_key=\"your-api-key\")\n \n conversations = [\n {\"role\": \"user\", \"content\": \"What is AI?\"},\n {\"role\": \"user\", \"content\": \"Explain machine learning.\"},\n {\"role\": \"user\", \"content\": \"What is deep learning?\"}\n ]\n \n requests = [\n {\n \"custom_id\": f\"batch-{i}\",\n \"method\": \"POST\",\n \"url\": \"/v1/chat/completions\",\n \"body\": {\n \"model\": \"gpt-3.5-turbo\",\n \"messages\": [conv],\n \"temperature\": 0.7\n }\n }\n for i, conv in enumerate(conversations)\n ]\n \n responses = await client.process_batch(requests)\n return responses\n```\n\n## Testing\n\nThe project uses pytest for testing. To run the tests:\n\n1. Clone the repository:\n```bash\ngit clone https://github.com/yourusername/speedy-openai.git\ncd speedy-openai\n```\n\n2. Install development dependencies:\n```bash\npoetry install\n```\n\n3. Run tests:\n```bash\npoetry run pytest\n```\n\n### Test Structure\n\nThe test suite includes:\n\n- Unit tests for core functionality\n- Integration tests for API interactions\n- Rate limiting tests\n- Concurrency tests\n- Error handling tests\n\n### Running Specific Tests\n\nRun specific test categories:\n```bash\n# Run only rate limiter tests\npoetry run pytest tests/test_rate_limiter.py\n\n# Run only client tests\npoetry run pytest tests/test_client.py\n\n# Run with verbose output\npoetry run pytest -v\n\n# Run with coverage report\npoetry run pytest --cov=speedy_openai\n```\n\n### Writing Tests\n\nWhen contributing new features, please ensure:\n- All new features have corresponding tests\n- Test coverage remains above 80%\n- Tests are properly documented\n- Both success and failure cases are covered\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## Support\n\nFor issues, questions, or contributions, please create an issue in the GitHub repository.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Async OpenAI client for fast and efficient API requests using AIOHTTP module.",
"version": "0.2.0",
"project_urls": {
"Documentation": "https://github.com/lucafirefox/speedy-openai#readme",
"Homepage": "https://github.com/lucafirefox/speedy-openai",
"Repository": "https://github.com/lucafirefox/speedy-openai"
},
"split_keywords": [
"openai",
" async",
" aiohttp",
" api"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "11b5f244498a7d815bc9609c6e5108a7e0936f943e1de098e247869428bc967d",
"md5": "c06ed6e6e336043e49ea1a4c3f80b554",
"sha256": "60b4151c65f7d873cf890ea4f69c020e199c1c975605b16a5972fbd5c6c0e4b9"
},
"downloads": -1,
"filename": "speedy_openai-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c06ed6e6e336043e49ea1a4c3f80b554",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.9",
"size": 12279,
"upload_time": "2024-12-16T15:28:35",
"upload_time_iso_8601": "2024-12-16T15:28:35.327457Z",
"url": "https://files.pythonhosted.org/packages/11/b5/f244498a7d815bc9609c6e5108a7e0936f943e1de098e247869428bc967d/speedy_openai-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "61a36f587aba5087453f1f4a02a36194869337b4aba60e0ce4d8c60f6308223b",
"md5": "38f5e4301f26eeb2530de13d6b8d31ac",
"sha256": "c6d36ae5072ed006989147bd6505f8374d8a972c8553c966ae67ce748bf181d9"
},
"downloads": -1,
"filename": "speedy_openai-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "38f5e4301f26eeb2530de13d6b8d31ac",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.9",
"size": 8275,
"upload_time": "2024-12-16T15:28:37",
"upload_time_iso_8601": "2024-12-16T15:28:37.731596Z",
"url": "https://files.pythonhosted.org/packages/61/a3/6f587aba5087453f1f4a02a36194869337b4aba60e0ce4d8c60f6308223b/speedy_openai-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-16 15:28:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "lucafirefox",
"github_project": "speedy-openai",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "speedy-openai"
}