spellops


Namespellops JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/artste/spellops
SummaryHarness the power of speLL with spellops to write clean and readable pipelines.
upload_time2025-01-06 12:35:57
maintainerNone
docs_urlNone
authorStefano Giomo
requires_python>=3.7
licenseApache Software License 2.0
keywords nbdev jupyter notebook python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # spellops


<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

## Developer Guide

Instead of writing this:

``` python
L(f_c(L(...).map(f_a).filter(f_b))).map(f_d)[0]
```

With `spellops`’s `pipe` operator, you can visually maintain the order
of execution (`f_a → filter(f_b) → f_c → f_d`) by writing this:

``` python
L(...).map(f_a).filter(f_b).pipe(f_c).map(f_d)[0]
```

And with `tee` operator, you can inspect and document your pipeline like
this:

``` python
(L(...)             .tee('input data')
    .map(f_a)       .tee('apply f_a to individual elements')
    .filter(f_b)    .tee('filter by f_b')
    .pipe(f_c)      .tee('apply f_c to the whole list')
    .map(f_d)[0]    .tee('finally apply f_d to the resulting elements and returning first value')
)
```

And once you’re done, you can keep all of this in your production code:

``` python
def process(data,verbose=False):
    s = dict(show=verbose)
    return (L(data)     .tee('input data', **s)
        .map(f_a)       .tee('apply f_a to individual elements', **s)
        .filter(f_b)    .tee('filter by f_b', **s)
        .pipe(f_c)      .tee('apply f_c to the whole list', **s)
        .map(f_d)       .tee('finally apply f_d to the resulting elements and returning first value', **s)
        .unwrap()       # Extract the element out of the list
    )
```

Here are some examples:

## Import `L` and `spellops`

NOTE: order of import does not matters.

``` python
import spellops
from fastcore.foundation import L
```

### Fluent string manipulaiton

``` python
L(['a', 'b', 'c']).map(str.upper).pipe('->'.join, wrap=False)
```

    'A->B->C'

Or using convenience mehtod `pipen` that stands for `pipe` with
`wrap=False` (no `wrap`):

``` python
L(['a', 'b', 'c']).map(str.upper).pipen('->'.join)
```

    'A->B->C'

### Count how many elements are present in both sublists

``` python
(L([[1,2,3,2],[2,4,1]])    .tee('input')
     .map(set)             .tee('to set')
     .starpipe(set.intersection)  .tee('common elements')
     .pipe(len)            .tee('count elements')
     .unwrap()
)
```

    input
    [[1, 2, 3, 2], [2, 4, 1]]
    to set
    [{1, 2, 3}, {1, 2, 4}]
    common elements
    [1, 2]
    count elements
    [2]

    2

An alternative approach can be to pipe with `wrap=False`:

**NOTE:** In this case, you can’t use `tee` after the final `pipe`
operator because it no longer returns an `L` instance.

``` python
(L([[1,2,3,2],[2,4,1]])    .tee('input')
     .map(set)             .tee('to set')
     .starpipe(set.intersection)  .tee('common elements')
     .pipe(len, wrap=False) # count elements
)
```

    input
    [[1, 2, 3, 2], [2, 4, 1]]
    to set
    [{1, 2, 3}, {1, 2, 4}]
    common elements
    [1, 2]

    2

### Solve an AoC task

**SPOILER ALERT**: the following is a `speLL` to solve AoC 2024 part B.

**GOAL**: For each number in the left list, we need to count how many
times it appears in the right list, multiply these together, and sum all
results. This creates a “similarity score”, counting occurrences and
multiplying, that measures how frequently numbers from the left list
appear in the right list.

``` python
sample = '''3   4
4   3
2   5
1   3
3   9
3   3
'''

# This function will be "mapped" to individual elements
def to_int_tuple(a,b): return (int(a),int(b))

# this function acts on the whole list
def count_instances(As,Bs): return [(o,len([t for t in Bs if t==o])) for  o in As]

from math import prod
(L(sample.splitlines())
                .map(str.split)         .tee('input data')
                .starmap(to_int_tuple)  .tee('int to tuples')
                .zip(cycled=True)       .tee('tuple of lists')
                .starpipe(count_instances)  .tee('apply count_instances to the "whole list"')
                .map(prod)              .tee('multiply tuple elements')
                .sum()
    )
```

    input data
    [['3', '4'], ['4', '3'], ['2', '5'], ['1', '3'], ['3', '9'], ['3', '3']]
    int to tuples
    [(3, 4), (4, 3), (2, 5), (1, 3), (3, 9), (3, 3)]
    tuple of lists
    [(3, 4, 2, 1, 3, 3), (4, 3, 5, 3, 9, 3)]
    apply count_instances to the "whole list"
    [(3, 3), (4, 1), (2, 0), (1, 0), (3, 3), (3, 3)]
    multiply tuple elements
    [9, 4, 0, 0, 9, 9]

    31

### Visually inspect images transformations:

``` python
import matplotlib.pyplot as plt
import numpy as np

def plot_images(x:L, msg):
    N = len(x)
    plt.figure(figsize=(4*N,4))
    for i,o in enumerate(x):
        plt.subplot(1,N,i+1)
        plt.imshow(o)
        plt.title(f'Image: {i}')
    plt.suptitle(msg)

(L([[[0,0,0],[1,1,1],[0,0,0]],[[1,0,0],[0,1,0],[0,0,1]]])  .tee('Input images',f=plot_images)
    .map(lambda x: np.rot90(x,k=1)) .tee('Rotate 90 degree',f=plot_images)
)
```

    (#2) [array([[0, 1, 0],
           [0, 1, 0],
           [0, 1, 0]]),array([[0, 0, 1],
           [0, 1, 0],
           [1, 0, 0]])]

![](index_files/figure-commonmark/cell-8-output-2.png)

![](index_files/figure-commonmark/cell-8-output-3.png)

### Install spellops in Development mode

``` sh
# make sure spellops package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to spellops
$ nbdev_prepare
```

## Usage

### Installation

Install latest from the GitHub
[repository](https://github.com/artste/spellops):

``` sh
$ pip install git+https://github.com/artste/spellops.git
```

or from [pypi](https://pypi.org/project/spellops/)

``` sh
$ pip install spellops
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/artste/spellops",
    "name": "spellops",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "nbdev jupyter notebook python",
    "author": "Stefano Giomo",
    "author_email": "artste@users.noreply.github.com",
    "download_url": "https://files.pythonhosted.org/packages/17/2d/37796f763d1c472d1b31e0b0c93a8ba4fd68c9dec7949e214ec2892b5f5e/spellops-0.0.1.tar.gz",
    "platform": null,
    "description": "# spellops\n\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Developer Guide\n\nInstead of writing this:\n\n``` python\nL(f_c(L(...).map(f_a).filter(f_b))).map(f_d)[0]\n```\n\nWith `spellops`\u2019s `pipe` operator, you can visually maintain the order\nof execution (`f_a \u2192 filter(f_b) \u2192 f_c \u2192 f_d`) by writing this:\n\n``` python\nL(...).map(f_a).filter(f_b).pipe(f_c).map(f_d)[0]\n```\n\nAnd with `tee` operator, you can inspect and document your pipeline like\nthis:\n\n``` python\n(L(...)             .tee('input data')\n    .map(f_a)       .tee('apply f_a to individual elements')\n    .filter(f_b)    .tee('filter by f_b')\n    .pipe(f_c)      .tee('apply f_c to the whole list')\n    .map(f_d)[0]    .tee('finally apply f_d to the resulting elements and returning first value')\n)\n```\n\nAnd once you\u2019re done, you can keep all of this in your production code:\n\n``` python\ndef process(data,verbose=False):\n    s = dict(show=verbose)\n    return (L(data)     .tee('input data', **s)\n        .map(f_a)       .tee('apply f_a to individual elements', **s)\n        .filter(f_b)    .tee('filter by f_b', **s)\n        .pipe(f_c)      .tee('apply f_c to the whole list', **s)\n        .map(f_d)       .tee('finally apply f_d to the resulting elements and returning first value', **s)\n        .unwrap()       # Extract the element out of the list\n    )\n```\n\nHere are some examples:\n\n## Import `L` and `spellops`\n\nNOTE: order of import does not matters.\n\n``` python\nimport spellops\nfrom fastcore.foundation import L\n```\n\n### Fluent string manipulaiton\n\n``` python\nL(['a', 'b', 'c']).map(str.upper).pipe('->'.join, wrap=False)\n```\n\n    'A->B->C'\n\nOr using convenience mehtod `pipen` that stands for `pipe` with\n`wrap=False` (no `wrap`):\n\n``` python\nL(['a', 'b', 'c']).map(str.upper).pipen('->'.join)\n```\n\n    'A->B->C'\n\n### Count how many elements are present in both sublists\n\n``` python\n(L([[1,2,3,2],[2,4,1]])    .tee('input')\n     .map(set)             .tee('to set')\n     .starpipe(set.intersection)  .tee('common elements')\n     .pipe(len)            .tee('count elements')\n     .unwrap()\n)\n```\n\n    input\n    [[1, 2, 3, 2], [2, 4, 1]]\n    to set\n    [{1, 2, 3}, {1, 2, 4}]\n    common elements\n    [1, 2]\n    count elements\n    [2]\n\n    2\n\nAn alternative approach can be to pipe with `wrap=False`:\n\n**NOTE:** In this case, you can\u2019t use `tee` after the final `pipe`\noperator because it no longer returns an `L` instance.\n\n``` python\n(L([[1,2,3,2],[2,4,1]])    .tee('input')\n     .map(set)             .tee('to set')\n     .starpipe(set.intersection)  .tee('common elements')\n     .pipe(len, wrap=False) # count elements\n)\n```\n\n    input\n    [[1, 2, 3, 2], [2, 4, 1]]\n    to set\n    [{1, 2, 3}, {1, 2, 4}]\n    common elements\n    [1, 2]\n\n    2\n\n### Solve an AoC task\n\n**SPOILER ALERT**: the following is a `speLL` to solve AoC 2024 part B.\n\n**GOAL**: For each number in the left list, we need to count how many\ntimes it appears in the right list, multiply these together, and sum all\nresults. This creates a \u201csimilarity score\u201d, counting occurrences and\nmultiplying, that measures how frequently numbers from the left list\nappear in the right list.\n\n``` python\nsample = '''3   4\n4   3\n2   5\n1   3\n3   9\n3   3\n'''\n\n# This function will be \"mapped\" to individual elements\ndef to_int_tuple(a,b): return (int(a),int(b))\n\n# this function acts on the whole list\ndef count_instances(As,Bs): return [(o,len([t for t in Bs if t==o])) for  o in As]\n\nfrom math import prod\n(L(sample.splitlines())\n                .map(str.split)         .tee('input data')\n                .starmap(to_int_tuple)  .tee('int to tuples')\n                .zip(cycled=True)       .tee('tuple of lists')\n                .starpipe(count_instances)  .tee('apply count_instances to the \"whole list\"')\n                .map(prod)              .tee('multiply tuple elements')\n                .sum()\n    )\n```\n\n    input data\n    [['3', '4'], ['4', '3'], ['2', '5'], ['1', '3'], ['3', '9'], ['3', '3']]\n    int to tuples\n    [(3, 4), (4, 3), (2, 5), (1, 3), (3, 9), (3, 3)]\n    tuple of lists\n    [(3, 4, 2, 1, 3, 3), (4, 3, 5, 3, 9, 3)]\n    apply count_instances to the \"whole list\"\n    [(3, 3), (4, 1), (2, 0), (1, 0), (3, 3), (3, 3)]\n    multiply tuple elements\n    [9, 4, 0, 0, 9, 9]\n\n    31\n\n### Visually inspect images transformations:\n\n``` python\nimport matplotlib.pyplot as plt\nimport numpy as np\n\ndef plot_images(x:L, msg):\n    N = len(x)\n    plt.figure(figsize=(4*N,4))\n    for i,o in enumerate(x):\n        plt.subplot(1,N,i+1)\n        plt.imshow(o)\n        plt.title(f'Image: {i}')\n    plt.suptitle(msg)\n\n(L([[[0,0,0],[1,1,1],[0,0,0]],[[1,0,0],[0,1,0],[0,0,1]]])  .tee('Input images',f=plot_images)\n    .map(lambda x: np.rot90(x,k=1)) .tee('Rotate 90 degree',f=plot_images)\n)\n```\n\n    (#2) [array([[0, 1, 0],\n           [0, 1, 0],\n           [0, 1, 0]]),array([[0, 0, 1],\n           [0, 1, 0],\n           [1, 0, 0]])]\n\n![](index_files/figure-commonmark/cell-8-output-2.png)\n\n![](index_files/figure-commonmark/cell-8-output-3.png)\n\n### Install spellops in Development mode\n\n``` sh\n# make sure spellops package is installed in development mode\n$ pip install -e .\n\n# make changes under nbs/ directory\n# ...\n\n# compile to have changes apply to spellops\n$ nbdev_prepare\n```\n\n## Usage\n\n### Installation\n\nInstall latest from the GitHub\n[repository](https://github.com/artste/spellops):\n\n``` sh\n$ pip install git+https://github.com/artste/spellops.git\n```\n\nor from [pypi](https://pypi.org/project/spellops/)\n\n``` sh\n$ pip install spellops\n```\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "Harness the power of speLL with spellops to write clean and readable pipelines.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/artste/spellops"
    },
    "split_keywords": [
        "nbdev",
        "jupyter",
        "notebook",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff49d530041d85bb4e408ed532c88a111715c8527eef53810a91883f0d204514",
                "md5": "294806705f00b9a511eadd5d5fa3236c",
                "sha256": "174692d2c5ad9f27ac3ee812590e1d6794b216a10d9bab6007764e7bd8edf8a8"
            },
            "downloads": -1,
            "filename": "spellops-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "294806705f00b9a511eadd5d5fa3236c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5489,
            "upload_time": "2025-01-06T12:35:52",
            "upload_time_iso_8601": "2025-01-06T12:35:52.874649Z",
            "url": "https://files.pythonhosted.org/packages/ff/49/d530041d85bb4e408ed532c88a111715c8527eef53810a91883f0d204514/spellops-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "172d37796f763d1c472d1b31e0b0c93a8ba4fd68c9dec7949e214ec2892b5f5e",
                "md5": "205e395833a61634b112a086027d1386",
                "sha256": "d0064533e52751cb721c8a627614e3a0062b53137fda460795af800c2888c7f7"
            },
            "downloads": -1,
            "filename": "spellops-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "205e395833a61634b112a086027d1386",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 6817,
            "upload_time": "2025-01-06T12:35:57",
            "upload_time_iso_8601": "2025-01-06T12:35:57.766495Z",
            "url": "https://files.pythonhosted.org/packages/17/2d/37796f763d1c472d1b31e0b0c93a8ba4fd68c9dec7949e214ec2892b5f5e/spellops-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-06 12:35:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "artste",
    "github_project": "spellops",
    "github_not_found": true,
    "lcname": "spellops"
}
        
Elapsed time: 1.65682s