spendpoint


Namespendpoint JSON
Version 0.5.1 PyPI version JSON
download
home_page
SummarySPARQL endpoint for ontologies.
upload_time2023-10-11 12:20:32
maintainer
docs_urlNone
author
requires_python>=3.9
license
keywords spendpoint
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ##########
SpEndPoint
##########

Creates a SPARQL endpoint supporting custom services.
The default access point is at `http://127.0.0.1:8000`.
This endpoint can be configured in the `configuration.toml <data/configuration.toml>`_ file.
The docker image created uses uvicorn the host the application at `0.0.0.0:80`. Feel free to map this to any port of your liking.

Bound services
--------------

We currently support 4 bind services out of the box:

.. code-block::

   dtf:outlier
   dtf:example
   dtf:conversion
   dtf:cell

The outlier service relies on `another endpoint <https://msdl.uantwerpen.be/git/lucasalbertins/DTDesign/src/main/tools/typeOperations>`_ which needs to be set up and accessible.

.. code-block:: sparql

   PREFIX dtf: <https://ontology.rys.app/dt/function/>
   SELECT ?cell ?cell_value WHERE {
     SERVICE <http://localhost:8000/> {BIND(dtf:cell("data/example.csv", 0, 0) AS ?cell)}
   }

SPARQL query showing bind based cell service call.

URI based services
------------------

A second, more versatile, way to access a service is provided in the form of an URI.
It is possible to query cells by specifying an individual cell in the URI of the service call.

.. code-block:: sparql

   SELECT ?s ?p ?o WHERE {
     BIND(ENCODE_FOR_URI("http://ua.be/sdo2l/description/artifacts/artifacts#random-artefact") as ?e)
     BIND(uri(concat("http://localhost:8000/cell/?iri=", ?e ,"&row=2&column=2&file_name=example.csv")) as ?c)
     SERVICE ?c {?s ?p ?o}
   }

SPARQL query showing URI based cell service call.

Installation
------------

..
   .. code-block:: shell

      pip install spendpoint

   or

.. code-block:: shell

   pip install --index-url https://pip:glpat-m8mNfhxZAUnWvy7rLS1x@git.rys.one/api/v4/projects/262/packages/pypi/simple --no-deps spendpoint

Configuration
-------------

A configuration file at `configuration.toml <data/configuration.toml>`_ holds all user configurable data.
You can set the `host` and `port` the server will listen on.
A more advanced use is to import extra services.
These services need to be defined in the `service.py` file as well.


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "spendpoint",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "spendpoint",
    "author": "",
    "author_email": "Arkadiusz Micha\u0142 Ry\u015b <Arkadiusz.Michal.Rys@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/27/84/43877e695051a31f628c11214b27542d41ac7bb549704c94558c78d26696/spendpoint-0.5.1.tar.gz",
    "platform": null,
    "description": "##########\nSpEndPoint\n##########\n\nCreates a SPARQL endpoint supporting custom services.\nThe default access point is at `http://127.0.0.1:8000`.\nThis endpoint can be configured in the `configuration.toml <data/configuration.toml>`_ file.\nThe docker image created uses uvicorn the host the application at `0.0.0.0:80`. Feel free to map this to any port of your liking.\n\nBound services\n--------------\n\nWe currently support 4 bind services out of the box:\n\n.. code-block::\n\n   dtf:outlier\n   dtf:example\n   dtf:conversion\n   dtf:cell\n\nThe outlier service relies on `another endpoint <https://msdl.uantwerpen.be/git/lucasalbertins/DTDesign/src/main/tools/typeOperations>`_ which needs to be set up and accessible.\n\n.. code-block:: sparql\n\n   PREFIX dtf: <https://ontology.rys.app/dt/function/>\n   SELECT ?cell ?cell_value WHERE {\n     SERVICE <http://localhost:8000/> {BIND(dtf:cell(\"data/example.csv\", 0, 0) AS ?cell)}\n   }\n\nSPARQL query showing bind based cell service call.\n\nURI based services\n------------------\n\nA second, more versatile, way to access a service is provided in the form of an URI.\nIt is possible to query cells by specifying an individual cell in the URI of the service call.\n\n.. code-block:: sparql\n\n   SELECT ?s ?p ?o WHERE {\n     BIND(ENCODE_FOR_URI(\"http://ua.be/sdo2l/description/artifacts/artifacts#random-artefact\") as ?e)\n     BIND(uri(concat(\"http://localhost:8000/cell/?iri=\", ?e ,\"&row=2&column=2&file_name=example.csv\")) as ?c)\n     SERVICE ?c {?s ?p ?o}\n   }\n\nSPARQL query showing URI based cell service call.\n\nInstallation\n------------\n\n..\n   .. code-block:: shell\n\n      pip install spendpoint\n\n   or\n\n.. code-block:: shell\n\n   pip install --index-url https://pip:glpat-m8mNfhxZAUnWvy7rLS1x@git.rys.one/api/v4/projects/262/packages/pypi/simple --no-deps spendpoint\n\nConfiguration\n-------------\n\nA configuration file at `configuration.toml <data/configuration.toml>`_ holds all user configurable data.\nYou can set the `host` and `port` the server will listen on.\nA more advanced use is to import extra services.\nThese services need to be defined in the `service.py` file as well.\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "SPARQL endpoint for ontologies.",
    "version": "0.5.1",
    "project_urls": {
        "source": "https://git.rys.one/dtdesign/spendpoint"
    },
    "split_keywords": [
        "spendpoint"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "12819450a643248c2714eed2c8a30cbd44c349d1a1cdee94e803c8177a6bb769",
                "md5": "e9525aa1493c5f111104cb23e3b71752",
                "sha256": "1c7e781572e9f31b37cc77ada8b8afdf5e7ca4d21ef73ba48e06409de4cd3216"
            },
            "downloads": -1,
            "filename": "spendpoint-0.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e9525aa1493c5f111104cb23e3b71752",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 11510,
            "upload_time": "2023-10-11T12:20:30",
            "upload_time_iso_8601": "2023-10-11T12:20:30.054939Z",
            "url": "https://files.pythonhosted.org/packages/12/81/9450a643248c2714eed2c8a30cbd44c349d1a1cdee94e803c8177a6bb769/spendpoint-0.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "278443877e695051a31f628c11214b27542d41ac7bb549704c94558c78d26696",
                "md5": "7f7b489bfc44237d60cae396fe2b0bff",
                "sha256": "ca0a980003aecc40368645d1db05cf9483373b29abc85115a8eace6d7413a8a4"
            },
            "downloads": -1,
            "filename": "spendpoint-0.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7f7b489bfc44237d60cae396fe2b0bff",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 14102,
            "upload_time": "2023-10-11T12:20:32",
            "upload_time_iso_8601": "2023-10-11T12:20:32.095461Z",
            "url": "https://files.pythonhosted.org/packages/27/84/43877e695051a31f628c11214b27542d41ac7bb549704c94558c78d26696/spendpoint-0.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-11 12:20:32",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "spendpoint"
}
        
Elapsed time: 0.72437s