spib-we


Namespib-we JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/wangdedi1997/spib_we
SummaryThis is a WESTPA 2.0 plug-in for SPIB augmented weighted ensemble.
upload_time2024-11-22 02:21:54
maintainerNone
docs_urlNone
authorDedi Wang
requires_python>=3.6
licenseMIT license
keywords spib_we
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            ===============
SPIB-WE plug-in
===============


.. image:: https://img.shields.io/pypi/v/spib_we.svg
        :target: https://pypi.python.org/pypi/spib_we

.. image:: https://img.shields.io/travis/wangdedi1997/spib_we.svg
        :target: https://travis-ci.com/wangdedi1997/spib_we

.. image:: https://readthedocs.org/projects/spib-we/badge/?version=latest
        :target: https://spib-we.readthedocs.io/en/latest/?version=latest
        :alt: Documentation Status




This is a WESTPA 2.0 plug-in for SPIB augmented weighted ensemble.


* Free software: MIT license
* Documentation: https://spib-we.readthedocs.io.


Features
--------

* Employ SPIB to automatically construct low-dimensional CVs to augment weighted ensemble simulations;
* Implement a rectilinear grid binning scheme to automatically determine bin sizes for uniformly binning SPIB-learned CVs;
* Propose a hybrid approach that combines SPIB-learned CVs with expert-based CVs to achieve more reliable sampling.


Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2023-01-16)
------------------

* First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/wangdedi1997/spib_we",
    "name": "spib-we",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "spib_we",
    "author": "Dedi Wang",
    "author_email": "wangdedi1997@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d7/c0/20fc9b7d9de9307b396b564cd95f7c97916c2f9baf5520846a8af8700d3e/spib_we-0.1.0.tar.gz",
    "platform": null,
    "description": "===============\r\nSPIB-WE plug-in\r\n===============\r\n\r\n\r\n.. image:: https://img.shields.io/pypi/v/spib_we.svg\r\n        :target: https://pypi.python.org/pypi/spib_we\r\n\r\n.. image:: https://img.shields.io/travis/wangdedi1997/spib_we.svg\r\n        :target: https://travis-ci.com/wangdedi1997/spib_we\r\n\r\n.. image:: https://readthedocs.org/projects/spib-we/badge/?version=latest\r\n        :target: https://spib-we.readthedocs.io/en/latest/?version=latest\r\n        :alt: Documentation Status\r\n\r\n\r\n\r\n\r\nThis is a WESTPA 2.0 plug-in for SPIB augmented weighted ensemble.\r\n\r\n\r\n* Free software: MIT license\r\n* Documentation: https://spib-we.readthedocs.io.\r\n\r\n\r\nFeatures\r\n--------\r\n\r\n* Employ SPIB to automatically construct low-dimensional CVs to augment weighted ensemble simulations;\r\n* Implement a rectilinear grid binning scheme to automatically determine bin sizes for uniformly binning SPIB-learned CVs;\r\n* Propose a hybrid approach that combines SPIB-learned CVs with expert-based CVs to achieve more reliable sampling.\r\n\r\n\r\nCredits\r\n-------\r\n\r\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\r\n\r\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\r\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\r\n\r\n\r\n=======\r\nHistory\r\n=======\r\n\r\n0.1.0 (2023-01-16)\r\n------------------\r\n\r\n* First release on PyPI.\r\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "This is a WESTPA 2.0 plug-in for SPIB augmented weighted ensemble.",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/wangdedi1997/spib_we"
    },
    "split_keywords": [
        "spib_we"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6a47b035b3dbc7a9db9a6e03367b936c5053ff00c839924d300fbdb7fc6c5e49",
                "md5": "66fd3cb969a3e8eb9addb6313dc610e9",
                "sha256": "906fa2444eab47b392ab3fc293c53df9aca8057f9f1b17b7c46a9ed9a194ad2d"
            },
            "downloads": -1,
            "filename": "spib_we-0.1.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "66fd3cb969a3e8eb9addb6313dc610e9",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 11955,
            "upload_time": "2024-11-22T02:21:52",
            "upload_time_iso_8601": "2024-11-22T02:21:52.428273Z",
            "url": "https://files.pythonhosted.org/packages/6a/47/b035b3dbc7a9db9a6e03367b936c5053ff00c839924d300fbdb7fc6c5e49/spib_we-0.1.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d7c020fc9b7d9de9307b396b564cd95f7c97916c2f9baf5520846a8af8700d3e",
                "md5": "5a8ebda24e0ff783c4b20e1aa5c4508a",
                "sha256": "725e0f077c109bb3c17648036ab841c8de09c3c5144ae45438adba0f9608265d"
            },
            "downloads": -1,
            "filename": "spib_we-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5a8ebda24e0ff783c4b20e1aa5c4508a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 17613,
            "upload_time": "2024-11-22T02:21:54",
            "upload_time_iso_8601": "2024-11-22T02:21:54.214896Z",
            "url": "https://files.pythonhosted.org/packages/d7/c0/20fc9b7d9de9307b396b564cd95f7c97916c2f9baf5520846a8af8700d3e/spib_we-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-22 02:21:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "wangdedi1997",
    "github_project": "spib_we",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "tox": true,
    "lcname": "spib-we"
}
        
Elapsed time: 1.28660s