sportsdataverse


Namesportsdataverse JSON
Version 0.0.39 PyPI version JSON
download
home_pagehttps://github.com/sportsdataverse/sportsdataverse-py
SummaryRetrieve Sports data in Python
upload_time2023-09-03 05:44:19
maintainerSaiem Gilani
docs_urlNone
authorSaiem Gilani
requires_python
licenseMIT
keywords nfl college football data epa statistics web scraping
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # sportsdataverse-py <a href='https://py.sportsdataverse.org'><img src='https://raw.githubusercontent.com/sportsdataverse/sportsdataverse-py/master/sdv-py-logo.png' align="right"  width="20%" min-width="100px" /></a>
<!-- badges: start -->

![Lifecycle:experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg?style=for-the-badge&logo=github)
[![PyPI](https://img.shields.io/pypi/v/sportsdataverse?label=sportsdataverse&logo=python&style=for-the-badge)](https://pypi.org/project/sportsdataverse/)<a href='https://pypi.org/project/sportsdataverse/'><img alt="PyPI - Down
loads" src="https://img.shields.io/pypi/dm/sportsdataverse?style=for-the-badge"></a>
![Contributors](https://img.shields.io/github/contributors/sportsdataverse/sportsdataverse-py?style=for-the-badge)
[![Twitter
Follow](https://img.shields.io/twitter/follow/sportsdataverse?color=blue&label=%40sportsdataverse&logo=twitter&style=for-the-badge)](https://twitter.com/sportsdataverse)

<!-- badges: end -->


See [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details.

The goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football.

## Installation

sportsdataverse-py can be installed via pip:

```bash
pip install sportsdataverse

# with full dependencies
pip install sportsdataverse[all]
```

or from the repo (which may at times be more up to date):

```bash
git clone https://github.com/sportsdataverse/sportsdataverse-py
cd sportsdataverse-py
pip install -e .[all]
```

# **Our Authors**

-   [Saiem Gilani](https://twitter.com/saiemgilani)
<a href="https://twitter.com/saiemgilani" target="blank"><img src="https://img.shields.io/twitter/follow/saiemgilani?color=blue&label=%40saiemgilani&logo=twitter&style=for-the-badge" alt="@saiemgilani" /></a>
<a href="https://github.com/saiemgilani" target="blank"><img src="https://img.shields.io/github/followers/saiemgilani?color=eee&logo=Github&style=for-the-badge" alt="@saiemgilani" /></a>


## **Citations**

To cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use:

BibTex Citation
```bibtex
@misc{gilani_sdvpy_2021,
  author = {Gilani, Saiem},
  title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.},
  url = {https://py.sportsdataverse.org},
  season = {2021}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/sportsdataverse/sportsdataverse-py",
    "name": "sportsdataverse",
    "maintainer": "Saiem Gilani",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "nfl college football data epa statistics web scraping",
    "author": "Saiem Gilani",
    "author_email": "saiem.gilani@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b8/9b/78c64acbf501916237b9676e8aa8c178a2e936259a2e457b454c5d93cbd0/sportsdataverse-0.0.39.tar.gz",
    "platform": null,
    "description": "# sportsdataverse-py <a href='https://py.sportsdataverse.org'><img src='https://raw.githubusercontent.com/sportsdataverse/sportsdataverse-py/master/sdv-py-logo.png' align=\"right\"  width=\"20%\" min-width=\"100px\" /></a>\n<!-- badges: start -->\n\n![Lifecycle:experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg?style=for-the-badge&logo=github)\n[![PyPI](https://img.shields.io/pypi/v/sportsdataverse?label=sportsdataverse&logo=python&style=for-the-badge)](https://pypi.org/project/sportsdataverse/)<a href='https://pypi.org/project/sportsdataverse/'><img alt=\"PyPI - Down\nloads\" src=\"https://img.shields.io/pypi/dm/sportsdataverse?style=for-the-badge\"></a>\n![Contributors](https://img.shields.io/github/contributors/sportsdataverse/sportsdataverse-py?style=for-the-badge)\n[![Twitter\nFollow](https://img.shields.io/twitter/follow/sportsdataverse?color=blue&label=%40sportsdataverse&logo=twitter&style=for-the-badge)](https://twitter.com/sportsdataverse)\n\n<!-- badges: end -->\n\n\nSee [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details.\n\nThe goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football.\n\n## Installation\n\nsportsdataverse-py can be installed via pip:\n\n```bash\npip install sportsdataverse\n\n# with full dependencies\npip install sportsdataverse[all]\n```\n\nor from the repo (which may at times be more up to date):\n\n```bash\ngit clone https://github.com/sportsdataverse/sportsdataverse-py\ncd sportsdataverse-py\npip install -e .[all]\n```\n\n# **Our Authors**\n\n-   [Saiem Gilani](https://twitter.com/saiemgilani)\n<a href=\"https://twitter.com/saiemgilani\" target=\"blank\"><img src=\"https://img.shields.io/twitter/follow/saiemgilani?color=blue&label=%40saiemgilani&logo=twitter&style=for-the-badge\" alt=\"@saiemgilani\" /></a>\n<a href=\"https://github.com/saiemgilani\" target=\"blank\"><img src=\"https://img.shields.io/github/followers/saiemgilani?color=eee&logo=Github&style=for-the-badge\" alt=\"@saiemgilani\" /></a>\n\n\n## **Citations**\n\nTo cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use:\n\nBibTex Citation\n```bibtex\n@misc{gilani_sdvpy_2021,\n  author = {Gilani, Saiem},\n  title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.},\n  url = {https://py.sportsdataverse.org},\n  season = {2021}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Retrieve Sports data in Python",
    "version": "0.0.39",
    "project_urls": {
        "Bug Tracker": "https://github.com/sportsdataverse/sportsdataverse-py/issues",
        "Docs": "https://py.sportsdataverse.org/",
        "Homepage": "https://github.com/sportsdataverse/sportsdataverse-py"
    },
    "split_keywords": [
        "nfl",
        "college",
        "football",
        "data",
        "epa",
        "statistics",
        "web",
        "scraping"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "21ca6993b6936846a356e5040ea7d720572588437d71797089ff840a68785f64",
                "md5": "304556dca7dbf87210a234f3295dc41f",
                "sha256": "03fbe0ffb7d8b3ad612293e6134bb1ec212b7097c7ee47ca5e47ab48b44dc25b"
            },
            "downloads": -1,
            "filename": "sportsdataverse-0.0.39-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "304556dca7dbf87210a234f3295dc41f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8427904,
            "upload_time": "2023-09-03T05:44:16",
            "upload_time_iso_8601": "2023-09-03T05:44:16.100432Z",
            "url": "https://files.pythonhosted.org/packages/21/ca/6993b6936846a356e5040ea7d720572588437d71797089ff840a68785f64/sportsdataverse-0.0.39-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b89b78c64acbf501916237b9676e8aa8c178a2e936259a2e457b454c5d93cbd0",
                "md5": "fac07458ef7a6bc651ef7a6ab069823e",
                "sha256": "8fa52cc1a057b3af3c41f6ce23dd24751dd28b67e46e8655bb235e03dd57dd2e"
            },
            "downloads": -1,
            "filename": "sportsdataverse-0.0.39.tar.gz",
            "has_sig": false,
            "md5_digest": "fac07458ef7a6bc651ef7a6ab069823e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8309504,
            "upload_time": "2023-09-03T05:44:19",
            "upload_time_iso_8601": "2023-09-03T05:44:19.569600Z",
            "url": "https://files.pythonhosted.org/packages/b8/9b/78c64acbf501916237b9676e8aa8c178a2e936259a2e457b454c5d93cbd0/sportsdataverse-0.0.39.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-03 05:44:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sportsdataverse",
    "github_project": "sportsdataverse-py",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "sportsdataverse"
}
        
Elapsed time: 0.75077s