===========================================================================
``spvcm``: Gibbs sampling for spatially-correlated variance-components
===========================================================================
.. image:: https://travis-ci.org/pysal/spvcm.svg?branch=master
:target: https://travis-ci.org/pysal/spvcm
.. image:: https://zenodo.org/badge/79168765.svg
:target: https://zenodo.org/badge/latestdoi/79168765
This is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. For a complete overview, consult the walkthrough_.
*author*: Levi John Wolf
*email*: ``levi.john.wolf@gmail.com``
*institution*: University of Bristol & University of Chicago Center for Spatial Data Science
*preprint*: on the `Open Science Framework`_
--------------------
Installation
--------------------
This package works best in Python 3.5, but unittests pass in Python 2.7 as well.
Only Python 3.5+ is officially supported.
To install, first install the Anaconda Python Distribution_ from Continuum Analytics_. Installation of the package has been tested in Windows (10, 8, 7) Mac OSX (10.8+) and Linux using Anaconda 4.2.0, with Python version 3.5.
Once Anaconda is installed, ``spvcm`` can be installed using ``pip``, the Python Package Manager.
``pip install spvcm``
To install this from source, one can also navigate to the source directory and use:
``pip install ./``
which will install the package from the target source directory.
-------------------
Usage
-------------------
To use the package, start up a Python interpreter and run:
``import spvcm.api as spvcm``
Then, many differnet variance components model specificaions are available in:
``spvcm.both``
``spvcm.upper``
``spvcm.lower``
For more thorough directions, consult the Jupyter Notebook, ``using the sampler.ipynb``, which is provided in the ``spvcm/examples`` directory.
-------------------
Citation
-------------------
Levi John Wolf. (2016). `Gibbs Sampling for a class of spatially-correlated variance components models`. University of Chicago Center for Spatial Data Science Technical Report.
.. _Distribution: https://https://www.continuum.io/downloads
.. _Analytics: https://continuum.io
.. _walkthrough: https://github.com/ljwolf/spvcm/blob/master/spvcm/examples/using_the_sampler.ipynb
.. _`Open Science Framework`: https://osf.io/ks6t3/
Raw data
{
"_id": null,
"home_page": "https://github.com/ljwolf/spvcm",
"name": "spvcm",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Levi John Wolf",
"author_email": "levi.john.wolf@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b4/c9/43fb98bc60728b76fceee175119a1ff7e5033ed9012d07570e34a2a19a8f/spvcm-0.3.0.tar.gz",
"platform": "",
"description": "===========================================================================\n``spvcm``: Gibbs sampling for spatially-correlated variance-components\n===========================================================================\n\n.. image:: https://travis-ci.org/pysal/spvcm.svg?branch=master\n :target: https://travis-ci.org/pysal/spvcm\n.. image:: https://zenodo.org/badge/79168765.svg\n :target: https://zenodo.org/badge/latestdoi/79168765\n\nThis is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. For a complete overview, consult the walkthrough_.\n\n*author*: Levi John Wolf\n\n*email*: ``levi.john.wolf@gmail.com``\n\n*institution*: University of Bristol & University of Chicago Center for Spatial Data Science\n\n*preprint*: on the `Open Science Framework`_\n\n--------------------\nInstallation\n--------------------\n\nThis package works best in Python 3.5, but unittests pass in Python 2.7 as well. \nOnly Python 3.5+ is officially supported. \n\nTo install, first install the Anaconda Python Distribution_ from Continuum Analytics_. Installation of the package has been tested in Windows (10, 8, 7) Mac OSX (10.8+) and Linux using Anaconda 4.2.0, with Python version 3.5. \n\nOnce Anaconda is installed, ``spvcm`` can be installed using ``pip``, the Python Package Manager. \n\n``pip install spvcm``\n\nTo install this from source, one can also navigate to the source directory and use:\n\n``pip install ./``\n\nwhich will install the package from the target source directory. \n\n-------------------\nUsage\n-------------------\n\nTo use the package, start up a Python interpreter and run:\n``import spvcm.api as spvcm``\n\nThen, many differnet variance components model specificaions are available in:\n\n``spvcm.both``\n``spvcm.upper``\n``spvcm.lower``\n\nFor more thorough directions, consult the Jupyter Notebook, ``using the sampler.ipynb``, which is provided in the ``spvcm/examples`` directory. \n\n-------------------\nCitation\n-------------------\n\nLevi John Wolf. (2016). `Gibbs Sampling for a class of spatially-correlated variance components models`. University of Chicago Center for Spatial Data Science Technical Report. \n\n.. _Distribution: https://https://www.continuum.io/downloads\n.. _Analytics: https://continuum.io\n.. _walkthrough: https://github.com/ljwolf/spvcm/blob/master/spvcm/examples/using_the_sampler.ipynb\n.. _`Open Science Framework`: https://osf.io/ks6t3/",
"bugtrack_url": null,
"license": "3-Clause BSD",
"summary": "Fit spatial multilevel models and diagnose convergence",
"version": "0.3.0",
"project_urls": {
"Homepage": "https://github.com/ljwolf/spvcm"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b4c943fb98bc60728b76fceee175119a1ff7e5033ed9012d07570e34a2a19a8f",
"md5": "a2484be90598000eea5a5c499a684240",
"sha256": "ce331bd5d6bcb64a07c4393093f3978763cfc8764ad0737e1866f3905e6cceae"
},
"downloads": -1,
"filename": "spvcm-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "a2484be90598000eea5a5c499a684240",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5724408,
"upload_time": "2020-02-07T03:50:33",
"upload_time_iso_8601": "2020-02-07T03:50:33.048401Z",
"url": "https://files.pythonhosted.org/packages/b4/c9/43fb98bc60728b76fceee175119a1ff7e5033ed9012d07570e34a2a19a8f/spvcm-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-02-07 03:50:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ljwolf",
"github_project": "spvcm",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"circle": true,
"lcname": "spvcm"
}