sql-ai-faker


Namesql-ai-faker JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/otabek-olimjonov/ai_faker
SummaryAI-powered fake data generator for SQLAlchemy models using LLMs
upload_time2025-02-05 14:49:11
maintainerNone
docs_urlNone
authorOtabek Olimjonov
requires_python>=3.8
licenseMIT
keywords sqlalchemy faker ai llm testing database openai gemini
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AI Faker

AI-powered fake data generator for SQLAlchemy models using LLMs (OpenAI, Gemini).

## Features

- Generate realistic fake data using AI/LLM
- Batch generation for efficiency
- Support for OpenAI and Google's Gemini
- SQLAlchemy integration
- Type-aware data generation
- Unique constraint handling
- Relationship support

## Installation

```bash
# Install with OpenAI support
pip install ai_faker[openai]

# Install with Gemini support
pip install ai_faker[gemini]

# Install with all providers
pip install ai_faker[all]
```

## Quick Start

```python
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.orm import declarative_base
from ai_faker import DataGenerator, LLMInterface
from ai_faker.core.llm_providers import OpenAIProvider

# Create your SQLAlchemy model
Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    username = Column(String(50), unique=True)
    email = Column(String(100), unique=True)

# Initialize the provider and generator
provider = OpenAIProvider(api_key="your-api-key")
llm = LLMInterface(provider)
generator = DataGenerator(llm)

# Generate fake data
fake_users = generator.generate_fake_data(User, count=50)

print(fake_users)
```

## Environment Variables

Create a `.env` file:

```env
# OpenAI
OPENAI_API_KEY=your-openai-key

# Gemini
GOOGLE_API_KEY=your-google-key
```

## Supported Providers

### OpenAI
- Uses GPT models
- Requires OpenAI API key

### Gemini
- Uses Google's Gemini models
- Requires Google API key

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

This project is licensed under the MIT License - see the LICENSE file for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/otabek-olimjonov/ai_faker",
    "name": "sql-ai-faker",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "sqlalchemy, faker, ai, llm, testing, database, openai, gemini",
    "author": "Otabek Olimjonov",
    "author_email": "bekdevs01@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/09/40/ac5bdfbb159b5b1ed93eb75a255c279cb8136af3918dee3809b9bb47418a/sql_ai_faker-1.0.0.tar.gz",
    "platform": null,
    "description": "# AI Faker\n\nAI-powered fake data generator for SQLAlchemy models using LLMs (OpenAI, Gemini).\n\n## Features\n\n- Generate realistic fake data using AI/LLM\n- Batch generation for efficiency\n- Support for OpenAI and Google's Gemini\n- SQLAlchemy integration\n- Type-aware data generation\n- Unique constraint handling\n- Relationship support\n\n## Installation\n\n```bash\n# Install with OpenAI support\npip install ai_faker[openai]\n\n# Install with Gemini support\npip install ai_faker[gemini]\n\n# Install with all providers\npip install ai_faker[all]\n```\n\n## Quick Start\n\n```python\nfrom sqlalchemy import create_engine, Column, Integer, String\nfrom sqlalchemy.orm import declarative_base\nfrom ai_faker import DataGenerator, LLMInterface\nfrom ai_faker.core.llm_providers import OpenAIProvider\n\n# Create your SQLAlchemy model\nBase = declarative_base()\n\nclass User(Base):\n    __tablename__ = 'users'\n    id = Column(Integer, primary_key=True)\n    username = Column(String(50), unique=True)\n    email = Column(String(100), unique=True)\n\n# Initialize the provider and generator\nprovider = OpenAIProvider(api_key=\"your-api-key\")\nllm = LLMInterface(provider)\ngenerator = DataGenerator(llm)\n\n# Generate fake data\nfake_users = generator.generate_fake_data(User, count=50)\n\nprint(fake_users)\n```\n\n## Environment Variables\n\nCreate a `.env` file:\n\n```env\n# OpenAI\nOPENAI_API_KEY=your-openai-key\n\n# Gemini\nGOOGLE_API_KEY=your-google-key\n```\n\n## Supported Providers\n\n### OpenAI\n- Uses GPT models\n- Requires OpenAI API key\n\n### Gemini\n- Uses Google's Gemini models\n- Requires Google API key\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "AI-powered fake data generator for SQLAlchemy models using LLMs",
    "version": "1.0.0",
    "project_urls": {
        "Bug Reports": "https://github.com/otabek-olimjonov/ai_faker/issues",
        "Homepage": "https://github.com/otabek-olimjonov/ai_faker",
        "Source": "https://github.com/otabek-olimjonov/ai_faker"
    },
    "split_keywords": [
        "sqlalchemy",
        " faker",
        " ai",
        " llm",
        " testing",
        " database",
        " openai",
        " gemini"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8b188de1d99772c1e01d01f7590cc4bc849c39fafed9aac901c0a7953d389d84",
                "md5": "caaabc3f49c449874f876e60cc275394",
                "sha256": "2790619406075a673dd58f48ee0f51dee2a7d98ab3e6b5252046b58a0d9b974c"
            },
            "downloads": -1,
            "filename": "sql_ai_faker-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "caaabc3f49c449874f876e60cc275394",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 16990,
            "upload_time": "2025-02-05T14:49:09",
            "upload_time_iso_8601": "2025-02-05T14:49:09.961228Z",
            "url": "https://files.pythonhosted.org/packages/8b/18/8de1d99772c1e01d01f7590cc4bc849c39fafed9aac901c0a7953d389d84/sql_ai_faker-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0940ac5bdfbb159b5b1ed93eb75a255c279cb8136af3918dee3809b9bb47418a",
                "md5": "d22b89fd18d9d2e5895bec8a49f1122a",
                "sha256": "5a39e40004a3f5de7ef1b9c036ab6413ff90b98b68f93aa67d67a96f44a6525a"
            },
            "downloads": -1,
            "filename": "sql_ai_faker-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d22b89fd18d9d2e5895bec8a49f1122a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 15719,
            "upload_time": "2025-02-05T14:49:11",
            "upload_time_iso_8601": "2025-02-05T14:49:11.136640Z",
            "url": "https://files.pythonhosted.org/packages/09/40/ac5bdfbb159b5b1ed93eb75a255c279cb8136af3918dee3809b9bb47418a/sql_ai_faker-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-05 14:49:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "otabek-olimjonov",
    "github_project": "ai_faker",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "sql-ai-faker"
}
        
Elapsed time: 1.75551s