# SQL Shell
A GUI application that provides a SQL REPL interface for querying Excel and parquet files (more to come!)

## Features
- SQL query interface with syntax highlighting
- Support for querying local DuckDB database (pool.db)
- Import and query Excel files (.xlsx, .xls) and CSV files
- Results displayed in a clear, tabular format
- Keyboard shortcuts (Ctrl+Enter to execute queries)
## Installation
1. Make sure you have Python 3.8 or newer installed
2. Install the required dependencies:
```bash
pip install -r requirements.txt
```
You can also do:
```bash
pip install sqlshell
```
## Usage
1. Run the application:
```bash
python sqls.py
```
2. The application will automatically connect to a local DuckDB database named 'pool.db'
3. To query Excel files:
- Click the "Browse Excel" button
- Select your Excel file
- The file will be loaded as a table named 'imported_data'
- Query the data using SQL commands (e.g., `SELECT * FROM imported_data`)
4. Enter SQL queries in the top text area
- Press Ctrl+Enter or click "Execute" to run the query
- Results will be displayed in the bottom panel
## Example Queries
```sql
select * from sample_sales_data cd inner join product_catalog pc on pc.productid = cd.productid limit 3
```
you can also do multiple statements, i.e:
```sql
create or replace temporary view test_v as
select * from sample_sales_data cd
inner join product_catalog pc on pc.productid = cd.productid;
select distinct productid from test_v ;
```
Raw data
{
"_id": null,
"home_page": "https://github.com/yourusername/sqlshell",
"name": "sqlshell",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "sql, data analysis, gui, duckdb",
"author": "SQLShell Team",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/d4/14/6e117f8d9ca400841d9eb832e013e1f1751c24745d27997e94ea6d6658a0/sqlshell-0.1.6.tar.gz",
"platform": null,
"description": "# SQL Shell\n\nA GUI application that provides a SQL REPL interface for querying Excel and parquet files (more to come!)\n\n\n\n\n## Features\n\n- SQL query interface with syntax highlighting\n- Support for querying local DuckDB database (pool.db)\n- Import and query Excel files (.xlsx, .xls) and CSV files\n- Results displayed in a clear, tabular format\n- Keyboard shortcuts (Ctrl+Enter to execute queries)\n\n## Installation\n\n1. Make sure you have Python 3.8 or newer installed\n2. Install the required dependencies:\n ```bash\n pip install -r requirements.txt\n ```\n\nYou can also do:\n\n```bash\npip install sqlshell\n```\n\n## Usage\n\n1. Run the application:\n ```bash\n python sqls.py\n ```\n\n2. The application will automatically connect to a local DuckDB database named 'pool.db'\n\n3. To query Excel files:\n - Click the \"Browse Excel\" button\n - Select your Excel file\n - The file will be loaded as a table named 'imported_data'\n - Query the data using SQL commands (e.g., `SELECT * FROM imported_data`)\n\n4. Enter SQL queries in the top text area\n - Press Ctrl+Enter or click \"Execute\" to run the query\n - Results will be displayed in the bottom panel\n\n## Example Queries\n\n```sql\nselect * from sample_sales_data cd inner join product_catalog pc on pc.productid = cd.productid limit 3\n```\n\nyou can also do multiple statements, i.e:\n\n```sql\ncreate or replace temporary view test_v as \nselect * from sample_sales_data cd\ninner join product_catalog pc on pc.productid = cd.productid;\n\nselect distinct productid from test_v ;\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A powerful SQL shell with GUI interface for data analysis",
"version": "0.1.6",
"project_urls": {
"Homepage": "https://github.com/oyvinrog/SQLShell"
},
"split_keywords": [
"sql",
" data analysis",
" gui",
" duckdb"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "daa8295c5aebf4b5ff44264f4bc698601942f0994093c3c247cc0df3ac0fbf99",
"md5": "131cce50525237a89c6c169039c97e52",
"sha256": "f27cc6de2bb2749b383589a479dfb1239391dc8fea99539c380b7bdcc8187342"
},
"downloads": -1,
"filename": "sqlshell-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "131cce50525237a89c6c169039c97e52",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 20260,
"upload_time": "2025-03-16T21:11:47",
"upload_time_iso_8601": "2025-03-16T21:11:47.710939Z",
"url": "https://files.pythonhosted.org/packages/da/a8/295c5aebf4b5ff44264f4bc698601942f0994093c3c247cc0df3ac0fbf99/sqlshell-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d4146e117f8d9ca400841d9eb832e013e1f1751c24745d27997e94ea6d6658a0",
"md5": "e1ead7fdae67ea038c4a451587d29f2a",
"sha256": "917611448d161247cd55141aec3ebaf413c929f4e396829f1918dfbacfebca87"
},
"downloads": -1,
"filename": "sqlshell-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "e1ead7fdae67ea038c4a451587d29f2a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 20131,
"upload_time": "2025-03-16T21:11:49",
"upload_time_iso_8601": "2025-03-16T21:11:49.139917Z",
"url": "https://files.pythonhosted.org/packages/d4/14/6e117f8d9ca400841d9eb832e013e1f1751c24745d27997e94ea6d6658a0/sqlshell-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-03-16 21:11:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yourusername",
"github_project": "sqlshell",
"github_not_found": true,
"lcname": "sqlshell"
}