ssync


Namessync JSON
Version 1.0.1.dev0 PyPI version JSON
download
home_pageNone
SummaryA powerful Python library for automating interactions with social media platforms and integrating them with backend systems.
upload_time2025-02-07 18:29:39
maintainerNone
docs_urlNone
authorMark
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            **SocialSync** is a powerful Python library designed to automate interactions with social media platforms while providing advanced tools for code analysis, optimization, and integration with backend systems. Whether you're a developer looking to streamline your workflow or a business aiming to synchronize data across platforms, SocialSync has you covered.

## Key Features

- **Code Analysis and Optimization**: Analyze your Python code for unused variables, inefficiencies, and security vulnerabilities. Get actionable suggestions to improve your code quality.
- **Social Media Automation**: Post content, fetch trends, and analyze user engagement across platforms like TikTok, Instagram, and Twitter.
- **Backend Integration**: Seamlessly integrate with databases, APIs, and caching systems to build robust applications.
- **Machine Learning for Trends**: Use built-in machine learning models to predict future trends and optimize your content strategy.
- **Advanced Logging**: Monitor all operations with detailed logging for debugging and performance tracking.
- **Asynchronous Operations**: Perform tasks like posting content or fetching trends asynchronously for maximum efficiency.

## Installation

Install SocialSync via `pip`:

```bash
pip install ssync
```

* For full functionality, including machine learning capabilities, install the optional dependencies:

```bash
pip install 'socialsync[ml]'
```

## Quick Start

### Posting Content to Social Media

```python
from socialsync.api import SocialSyncAPI
from socialsync.auth import AuthHandler

auth = AuthHandler(platform="tiktok", client_id="your_client_id", client_secret="your_client_secret")
auth.get_access_token(code="your_authorization_code")

api = SocialSyncAPI(platform="tiktok", auth_handler=auth)
response = api.post_content("Hello, SocialSync!")
print(response)
```

### Predicting Trends with Machine Learning

```python
from socialsync.analytics import TrendAnalyzer

historical_data = [
    {"day": 1, "popularity": 100},
    {"day": 2, "popularity": 120},
    {"day": 3, "popularity": 150},
]

analyzer = TrendAnalyzer(data_source=None)
model = analyzer.train_trend_forecast_model(historical_data)

future_days = [4, 5, 6]
predictions = analyzer.predict_future_trends(model, future_days)
print("Predicted trends:", predictions)
```

## Configuration

SocialSync supports configuration via `mypy.ini`, `setup.cfg`, or `pyproject.toml`.

### mypy.ini
```ini
[mypy]
plugins =
    socialsync.mypy_plugin

[socialsync]
platforms = tiktok,instagram,twitter
```

### pyproject.toml
```toml
[tool.socialsync]
platforms = ["tiktok", "instagram", "twitter"]

[tool.mypy]
plugins = ["socialsync.mypy_plugin"]
```

## Version Compatibility

| SocialSync | Python Version | Supported Platforms |
|------------|----------------|---------------------|
| 1.0.0        | 3.8+           | TikTok, Instagram, Twitter |

## FAQ

### Can I use SocialSync in production?

* Yes! SocialSync is safe for production use. It does not interfere with your runtime environment and focuses on static analysis and automation.

### Why am I getting type errors?

Ensure that:
1. You are using the latest version of `mypy`.
2. All required plugins are configured correctly.
3. Your code adheres to the types specified in the documentation.

### How do I handle API errors?

* SocialSync includes built-in error handling for API requests, including automatic token refresh and retry mechanisms.

## Documentation

For detailed documentation, visit: [socialsync.readthedocs.io](https://socialsync.io/terms/)
<!--  -->
<!-- ## Community

- [Gitter Chat](https://gitter.im/socialsync/community)
- [Stack Overflow](https://stackoverflow.com/questions/tagged/socialsync)
- [GitHub Issues](https://github.com/socialsync/socialsync/issues) -->

## Contributing

We welcome contributions of all sizes! You can help by:
1. Improving existing features.
2. Adding new functionalities.
3. Writing tests and documentation.
4. Reporting bugs and issues.

## License

# SocialSync is released under the MIT License. See [LICENSE.md](./LICENSE.md) for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ssync",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Mark",
    "author_email": "socialsync.software@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/ef/e4/d1ae82fa39fbf732775579c419de1a4f18b2137a9a410296d0dd7b33e369/ssync-1.0.1.dev0.tar.gz",
    "platform": null,
    "description": "**SocialSync** is a powerful Python library designed to automate interactions with social media platforms while providing advanced tools for code analysis, optimization, and integration with backend systems. Whether you're a developer looking to streamline your workflow or a business aiming to synchronize data across platforms, SocialSync has you covered.\r\n\r\n## Key Features\r\n\r\n- **Code Analysis and Optimization**: Analyze your Python code for unused variables, inefficiencies, and security vulnerabilities. Get actionable suggestions to improve your code quality.\r\n- **Social Media Automation**: Post content, fetch trends, and analyze user engagement across platforms like TikTok, Instagram, and Twitter.\r\n- **Backend Integration**: Seamlessly integrate with databases, APIs, and caching systems to build robust applications.\r\n- **Machine Learning for Trends**: Use built-in machine learning models to predict future trends and optimize your content strategy.\r\n- **Advanced Logging**: Monitor all operations with detailed logging for debugging and performance tracking.\r\n- **Asynchronous Operations**: Perform tasks like posting content or fetching trends asynchronously for maximum efficiency.\r\n\r\n## Installation\r\n\r\nInstall SocialSync via `pip`:\r\n\r\n```bash\r\npip install ssync\r\n```\r\n\r\n* For full functionality, including machine learning capabilities, install the optional dependencies:\r\n\r\n```bash\r\npip install 'socialsync[ml]'\r\n```\r\n\r\n## Quick Start\r\n\r\n### Posting Content to Social Media\r\n\r\n```python\r\nfrom socialsync.api import SocialSyncAPI\r\nfrom socialsync.auth import AuthHandler\r\n\r\nauth = AuthHandler(platform=\"tiktok\", client_id=\"your_client_id\", client_secret=\"your_client_secret\")\r\nauth.get_access_token(code=\"your_authorization_code\")\r\n\r\napi = SocialSyncAPI(platform=\"tiktok\", auth_handler=auth)\r\nresponse = api.post_content(\"Hello, SocialSync!\")\r\nprint(response)\r\n```\r\n\r\n### Predicting Trends with Machine Learning\r\n\r\n```python\r\nfrom socialsync.analytics import TrendAnalyzer\r\n\r\nhistorical_data = [\r\n    {\"day\": 1, \"popularity\": 100},\r\n    {\"day\": 2, \"popularity\": 120},\r\n    {\"day\": 3, \"popularity\": 150},\r\n]\r\n\r\nanalyzer = TrendAnalyzer(data_source=None)\r\nmodel = analyzer.train_trend_forecast_model(historical_data)\r\n\r\nfuture_days = [4, 5, 6]\r\npredictions = analyzer.predict_future_trends(model, future_days)\r\nprint(\"Predicted trends:\", predictions)\r\n```\r\n\r\n## Configuration\r\n\r\nSocialSync supports configuration via `mypy.ini`, `setup.cfg`, or `pyproject.toml`.\r\n\r\n### mypy.ini\r\n```ini\r\n[mypy]\r\nplugins =\r\n    socialsync.mypy_plugin\r\n\r\n[socialsync]\r\nplatforms = tiktok,instagram,twitter\r\n```\r\n\r\n### pyproject.toml\r\n```toml\r\n[tool.socialsync]\r\nplatforms = [\"tiktok\", \"instagram\", \"twitter\"]\r\n\r\n[tool.mypy]\r\nplugins = [\"socialsync.mypy_plugin\"]\r\n```\r\n\r\n## Version Compatibility\r\n\r\n| SocialSync | Python Version | Supported Platforms |\r\n|------------|----------------|---------------------|\r\n| 1.0.0        | 3.8+           | TikTok, Instagram, Twitter |\r\n\r\n## FAQ\r\n\r\n### Can I use SocialSync in production?\r\n\r\n* Yes! SocialSync is safe for production use. It does not interfere with your runtime environment and focuses on static analysis and automation.\r\n\r\n### Why am I getting type errors?\r\n\r\nEnsure that:\r\n1. You are using the latest version of `mypy`.\r\n2. All required plugins are configured correctly.\r\n3. Your code adheres to the types specified in the documentation.\r\n\r\n### How do I handle API errors?\r\n\r\n* SocialSync includes built-in error handling for API requests, including automatic token refresh and retry mechanisms.\r\n\r\n## Documentation\r\n\r\nFor detailed documentation, visit: [socialsync.readthedocs.io](https://socialsync.io/terms/)\r\n<!--  -->\r\n<!-- ## Community\r\n\r\n- [Gitter Chat](https://gitter.im/socialsync/community)\r\n- [Stack Overflow](https://stackoverflow.com/questions/tagged/socialsync)\r\n- [GitHub Issues](https://github.com/socialsync/socialsync/issues) -->\r\n\r\n## Contributing\r\n\r\nWe welcome contributions of all sizes! You can help by:\r\n1. Improving existing features.\r\n2. Adding new functionalities.\r\n3. Writing tests and documentation.\r\n4. Reporting bugs and issues.\r\n\r\n## License\r\n\r\n# SocialSync is released under the MIT License. See [LICENSE.md](./LICENSE.md) for details.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A powerful Python library for automating interactions with social media platforms and integrating them with backend systems.",
    "version": "1.0.1.dev0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0737637e98a79e09feab6fe70a39c84cacc519ea54e5af87028b3d62b70dfe88",
                "md5": "3b1e117cb6802b65a691f06bb2cb796b",
                "sha256": "b398d756f1b60752eb6ef9d970206f67ebdcc1ad0761d8d55d62dc6d51f8de46"
            },
            "downloads": -1,
            "filename": "ssync-1.0.1.dev0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b1e117cb6802b65a691f06bb2cb796b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 12627,
            "upload_time": "2025-02-07T18:29:37",
            "upload_time_iso_8601": "2025-02-07T18:29:37.673610Z",
            "url": "https://files.pythonhosted.org/packages/07/37/637e98a79e09feab6fe70a39c84cacc519ea54e5af87028b3d62b70dfe88/ssync-1.0.1.dev0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "efe4d1ae82fa39fbf732775579c419de1a4f18b2137a9a410296d0dd7b33e369",
                "md5": "e35b3ac784e989562d31f4dccde3bea9",
                "sha256": "4d145a4c453b23a1da9187cd101f41df4a759e9886d408c8fb5922c9e8ea6611"
            },
            "downloads": -1,
            "filename": "ssync-1.0.1.dev0.tar.gz",
            "has_sig": false,
            "md5_digest": "e35b3ac784e989562d31f4dccde3bea9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 11819,
            "upload_time": "2025-02-07T18:29:39",
            "upload_time_iso_8601": "2025-02-07T18:29:39.168736Z",
            "url": "https://files.pythonhosted.org/packages/ef/e4/d1ae82fa39fbf732775579c419de1a4f18b2137a9a410296d0dd7b33e369/ssync-1.0.1.dev0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-07 18:29:39",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ssync"
}
        
Elapsed time: 1.03542s