st-kaggle-connector


Namest-kaggle-connector JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/arsentievalex/kaggle-streamlit-data-connector/tree/main
SummaryKaggle dataset connector for Streamlit
upload_time2023-12-04 13:32:48
maintainer
docs_urlNone
authorOleksandr Arsentiev
requires_python
licenseMIT
keywords streamlit custom component kaggle dataset connector
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Open Demo App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://kaggle-data-connector.streamlit.app/)

Custom component that allows to import Kaggle datasets to Streamlit apps.

[Kaggle](https://www.kaggle.com/) is the world's largest data science community. It enables users to explore and analyze a wide variety of public datasets.
This app demonstrates a simple `KaggleDatasetConnection` which was built by extending the 
[built-in BaseConnection](https://docs.streamlit.io/library/api-reference/connections/st.connections.experimentalbaseconnection)
You can view the connection source code
[here](https://github.com/arsentievalex/kaggle-streamlit-data-connector/blob/main/connection.py).

While Kaggle offers datasets in different formats, this connector ONLY supports CSV files.

A user can connect to a Kaggle dataset by providing the dataset path and filename.
The path is the part of the dataset URL after the domain name, the structure is following: username/dataset-name.
For example, for the dataset https://www.kaggle.com/shivamb/netflix-shows, the path is `shivamb/netflix-shows`,
and the file name is `netflix_titles.csv`.

Using this example, the code to connect to the dataset would look like this:

```
from st_kaggle_connector import KaggleDatasetConnection
import streamlit as st

conn = st.connection("kaggle_datasets", type=KaggleDatasetConnection)
df = conn.get(path='shivamb/netflix-shows', filename='netflix_titles.csv', ttl=3600)
```

KaggleDatasetConnection` class assumes that you have secrets set up in the following format:

```
[connections.kaggle_datasets]
 KAGGLE_USERNAME = "insert your Kaggle username"
 KAGGLE_KEY = "insert your Kaggle API key"
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/arsentievalex/kaggle-streamlit-data-connector/tree/main",
    "name": "st-kaggle-connector",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "streamlit,custom,component,kaggle,dataset,connector",
    "author": "Oleksandr Arsentiev",
    "author_email": "<arsentiev9393@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/97/bd/d7285c6a40c6809f91ff3b54cb4f170938fa9543027dcdb0cd065977b11f/st_kaggle_connector-0.1.3.tar.gz",
    "platform": null,
    "description": "[![Open Demo App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://kaggle-data-connector.streamlit.app/)\r\n\r\nCustom component that allows to import Kaggle datasets to Streamlit apps.\r\n\r\n[Kaggle](https://www.kaggle.com/) is the world's largest data science community. It enables users to explore and analyze a wide variety of public datasets.\r\nThis app demonstrates a simple `KaggleDatasetConnection` which was built by extending the \r\n[built-in BaseConnection](https://docs.streamlit.io/library/api-reference/connections/st.connections.experimentalbaseconnection)\r\nYou can view the connection source code\r\n[here](https://github.com/arsentievalex/kaggle-streamlit-data-connector/blob/main/connection.py).\r\n\r\nWhile Kaggle offers datasets in different formats, this connector ONLY supports CSV files.\r\n\r\nA user can connect to a Kaggle dataset by providing the dataset path and filename.\r\nThe path is the part of the dataset URL after the domain name, the structure is following: username/dataset-name.\r\nFor example, for the dataset https://www.kaggle.com/shivamb/netflix-shows, the path is `shivamb/netflix-shows`,\r\nand the file name is `netflix_titles.csv`.\r\n\r\nUsing this example, the code to connect to the dataset would look like this:\r\n\r\n```\r\nfrom st_kaggle_connector import KaggleDatasetConnection\r\nimport streamlit as st\r\n\r\nconn = st.connection(\"kaggle_datasets\", type=KaggleDatasetConnection)\r\ndf = conn.get(path='shivamb/netflix-shows', filename='netflix_titles.csv', ttl=3600)\r\n```\r\n\r\nKaggleDatasetConnection` class assumes that you have secrets set up in the following format:\r\n\r\n```\r\n[connections.kaggle_datasets]\r\n KAGGLE_USERNAME = \"insert your Kaggle username\"\r\n KAGGLE_KEY = \"insert your Kaggle API key\"\r\n```\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Kaggle dataset connector for Streamlit",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/arsentievalex/kaggle-streamlit-data-connector/tree/main"
    },
    "split_keywords": [
        "streamlit",
        "custom",
        "component",
        "kaggle",
        "dataset",
        "connector"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9b06f8ad22e0e79cc7e084ea93f587d54624aa81dd36f4dd6b958072df67a2e7",
                "md5": "58e65e7f8eee70a3b878d0183fb31efb",
                "sha256": "a23800daa54edaca76a7e6036772e0533dac60ae797f2cfca8014384e0ee5c1f"
            },
            "downloads": -1,
            "filename": "st_kaggle_connector-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "58e65e7f8eee70a3b878d0183fb31efb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3010,
            "upload_time": "2023-12-04T13:32:46",
            "upload_time_iso_8601": "2023-12-04T13:32:46.510763Z",
            "url": "https://files.pythonhosted.org/packages/9b/06/f8ad22e0e79cc7e084ea93f587d54624aa81dd36f4dd6b958072df67a2e7/st_kaggle_connector-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "97bdd7285c6a40c6809f91ff3b54cb4f170938fa9543027dcdb0cd065977b11f",
                "md5": "d666ab9238c69659b61d4eb9126d65df",
                "sha256": "0b03c388c1bf4f8f0411e0c1ca58f143ed9d71375944b9454c20758a3bcf6243"
            },
            "downloads": -1,
            "filename": "st_kaggle_connector-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d666ab9238c69659b61d4eb9126d65df",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2678,
            "upload_time": "2023-12-04T13:32:48",
            "upload_time_iso_8601": "2023-12-04T13:32:48.596148Z",
            "url": "https://files.pythonhosted.org/packages/97/bd/d7285c6a40c6809f91ff3b54cb4f170938fa9543027dcdb0cd065977b11f/st_kaggle_connector-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-04 13:32:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "arsentievalex",
    "github_project": "kaggle-streamlit-data-connector",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "st-kaggle-connector"
}
        
Elapsed time: 1.11377s