Name | stats-arrays JSON |
Version |
0.7
JSON |
| download |
home_page | None |
Summary | Standard NumPy array interface for defining uncertain parameters |
upload_time | 2024-08-19 16:46:49 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.6 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
The `stats_arrays` package provides a standard NumPy array interface for defining uncertain parameters used in models, and classes for Monte Carlo sampling. It also plays well with others.
# Motivation
* Want a consistent interface to SciPy and NumPy statistical function
* Want to be able to quickly load and save many parameter uncertainty distribution definitions in a portable format
* Want to manipulate and switch parameter uncertainty distributions and variables
* Want simple Monte Carlo random number generators that return a vector of parameter values to be fed into uncertainty or sensitivity analysis
* Want something simple, extensible, documented and tested
The `stats_arrays package was originally developed for the [Brightway2 life cycle assessment framework](https://docs.brightway.dev/), but can be applied to any stochastic model.
# Example
```python
>>> from stats_arrays import *
>>> my_variables = UncertaintyBase.from_dicts(
... {'loc': 2, 'scale': 0.5, 'uncertainty_type': NormalUncertainty.id},
... {'loc': 1.5, 'minimum': 0, 'maximum': 10, 'uncertainty_type': TriangularUncertainty.id}
... )
>>> my_variables
array([(2.0, 0.5, nan, nan, nan, False, 3),
(1.5, nan, nan, 0.0, 10.0, False, 5)],
dtype=[('loc', '<f8'), ('scale', '<f8'), ('shape', '<f8'),
('minimum', '<f8'), ('maximum', '<f8'), ('negative', '?'),
('uncertainty_type', 'u1')])
>>> my_rng = MCRandomNumberGenerator(my_variables)
>>> my_rng.next()
array([ 2.74414022, 3.54748507])
>>> # can also be used as an interator
>>> zip(my_rng, xrange(10))
[(array([ 2.96893108, 2.90654471]), 0),
(array([ 2.31190619, 1.49471845]), 1),
(array([ 3.02026168, 3.33696367]), 2),
(array([ 2.04775418, 3.68356226]), 3),
(array([ 2.61976694, 7.0149952 ]), 4),
(array([ 1.79914025, 6.55264372]), 5),
(array([ 2.2389968 , 1.11165296]), 6),
(array([ 1.69236527, 3.24463981]), 7),
(array([ 1.77750176, 1.90119991]), 8),
(array([ 2.32664152, 0.84490754]), 9)]
```
# More
* Source code: https://github.com/brightway-lca/stats_arrays
* Online documentation: https://stats-arrays.readthedocs.io/en/latest/
Raw data
{
"_id": null,
"home_page": null,
"name": "stats-arrays",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "Chris Mutel <cmutel@gmail.com>",
"keywords": null,
"author": null,
"author_email": "Chris Mutel <cmutel@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/95/39/16ae806d4293b04a3e94cb6aa8245b339c1a3a820ebf62bd3a2b946fd431/stats_arrays-0.7.tar.gz",
"platform": null,
"description": "The `stats_arrays` package provides a standard NumPy array interface for defining uncertain parameters used in models, and classes for Monte Carlo sampling. It also plays well with others.\n\n# Motivation\n\n* Want a consistent interface to SciPy and NumPy statistical function\n* Want to be able to quickly load and save many parameter uncertainty distribution definitions in a portable format\n* Want to manipulate and switch parameter uncertainty distributions and variables\n* Want simple Monte Carlo random number generators that return a vector of parameter values to be fed into uncertainty or sensitivity analysis\n* Want something simple, extensible, documented and tested\n\nThe `stats_arrays package was originally developed for the [Brightway2 life cycle assessment framework](https://docs.brightway.dev/), but can be applied to any stochastic model.\n\n# Example\n\n```python\n\n>>> from stats_arrays import *\n>>> my_variables = UncertaintyBase.from_dicts(\n... {'loc': 2, 'scale': 0.5, 'uncertainty_type': NormalUncertainty.id},\n... {'loc': 1.5, 'minimum': 0, 'maximum': 10, 'uncertainty_type': TriangularUncertainty.id}\n... )\n>>> my_variables\narray([(2.0, 0.5, nan, nan, nan, False, 3),\n (1.5, nan, nan, 0.0, 10.0, False, 5)],\n dtype=[('loc', '<f8'), ('scale', '<f8'), ('shape', '<f8'),\n ('minimum', '<f8'), ('maximum', '<f8'), ('negative', '?'),\n ('uncertainty_type', 'u1')])\n>>> my_rng = MCRandomNumberGenerator(my_variables)\n>>> my_rng.next()\narray([ 2.74414022, 3.54748507])\n>>> # can also be used as an interator\n>>> zip(my_rng, xrange(10))\n[(array([ 2.96893108, 2.90654471]), 0),\n (array([ 2.31190619, 1.49471845]), 1),\n (array([ 3.02026168, 3.33696367]), 2),\n (array([ 2.04775418, 3.68356226]), 3),\n (array([ 2.61976694, 7.0149952 ]), 4),\n (array([ 1.79914025, 6.55264372]), 5),\n (array([ 2.2389968 , 1.11165296]), 6),\n (array([ 1.69236527, 3.24463981]), 7),\n (array([ 1.77750176, 1.90119991]), 8),\n (array([ 2.32664152, 0.84490754]), 9)]\n\n```\n\n# More\n\n* Source code: https://github.com/brightway-lca/stats_arrays\n* Online documentation: https://stats-arrays.readthedocs.io/en/latest/\n",
"bugtrack_url": null,
"license": null,
"summary": "Standard NumPy array interface for defining uncertain parameters",
"version": "0.7",
"project_urls": {
"homepage": "https://github.com/brightway-lca/stats_arrays",
"source": "https://github.com/brightway-lca/stats_arrays",
"tracker": "https://github.com/brightway-lca/stats_arrays/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "45e11de3b60aaed45c7ac831cf84b17315c21014161eaa1e65112bd4043cb868",
"md5": "15797a8faf76ad368ea1c4295d6d1b77",
"sha256": "dcd3d827fc6192fd150b964b3d79e66e8f8e3805a0da20f20d50788c039de580"
},
"downloads": -1,
"filename": "stats_arrays-0.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "15797a8faf76ad368ea1c4295d6d1b77",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 26500,
"upload_time": "2024-08-19T16:46:47",
"upload_time_iso_8601": "2024-08-19T16:46:47.390505Z",
"url": "https://files.pythonhosted.org/packages/45/e1/1de3b60aaed45c7ac831cf84b17315c21014161eaa1e65112bd4043cb868/stats_arrays-0.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "953916ae806d4293b04a3e94cb6aa8245b339c1a3a820ebf62bd3a2b946fd431",
"md5": "9cd2e23e4f864f6eee5b2375615dfd40",
"sha256": "cf3987736997974dc7988711a3757d2d9b9ef4d252f5e3ca2e83a5b474e6ae39"
},
"downloads": -1,
"filename": "stats_arrays-0.7.tar.gz",
"has_sig": false,
"md5_digest": "9cd2e23e4f864f6eee5b2375615dfd40",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 30480,
"upload_time": "2024-08-19T16:46:49",
"upload_time_iso_8601": "2024-08-19T16:46:49.175276Z",
"url": "https://files.pythonhosted.org/packages/95/39/16ae806d4293b04a3e94cb6aa8245b339c1a3a820ebf62bd3a2b946fd431/stats_arrays-0.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-19 16:46:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "brightway-lca",
"github_project": "stats_arrays",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "stats-arrays"
}