# Nixtla [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Statistical%20Forecasting%20Algorithms%20by%20Nixtla%20&url=https://github.com/Nixtla/statsforecast&via=nixtlainc&hashtags=StatisticalModels,TimeSeries,Forecasting) [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlacommunity/shared_invite/zt-1pmhan9j5-F54XR20edHk0UtYAPcW4KQ)
<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
[![All Contributors](https://img.shields.io/badge/all_contributors-32-orange.svg?style=flat-square)](#contributors-)
<!-- ALL-CONTRIBUTORS-BADGE:END -->
<div align="center">
<img src="https://raw.githubusercontent.com/Nixtla/neuralforecast/main/nbs/imgs_indx/logo_mid.png">
<h1 align="center">Statistical β‘οΈ Forecast</h1>
<h3 align="center">Lightning fast forecasting with statistical and econometric models</h3>
[![CI](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml/badge.svg?branch=main)](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml)
[![Python](https://img.shields.io/pypi/pyversions/statsforecast)](https://pypi.org/project/statsforecast/)
[![PyPi](https://img.shields.io/pypi/v/statsforecast?color=blue)](https://pypi.org/project/statsforecast/)
[![conda-nixtla](https://img.shields.io/conda/vn/conda-forge/statsforecast?color=seagreen&label=conda)](https://anaconda.org/conda-forge/statsforecast)
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/Nixtla/statsforecast/blob/main/LICENSE)
[![docs](https://img.shields.io/website-up-down-green-red/http/nixtla.github.io/statsforecast.svg?label=docs)](https://nixtla.github.io/statsforecast/)
[![Downloads](https://pepy.tech/badge/statsforecast)](https://pepy.tech/project/statsforecast)
**StatsForecast** offers a collection of widely used univariate time series forecasting models, including automatic `ARIMA`, `ETS`, `CES`, and `Theta` modeling optimized for high performance using `numba`. It also includes a large battery of benchmarking models.
</div>
## Installation
You can install `StatsForecast` with:
```python
pip install statsforecast
```
or
```python
conda install -c conda-forge statsforecast
```
Vist our [Installation Guide](https://nixtla.github.io/statsforecast/docs/getting-started/installation.html) for further instructions.
## Quick Start
**Minimal Example**
```python
from statsforecast import StatsForecast
from statsforecast.models import AutoARIMA
from statsforecast.utils import AirPassengersDF
df = AirPassengersDF
sf = StatsForecast(
models = [AutoARIMA(season_length = 12)],
freq = 'M'
)
sf.fit(df)
sf.predict(h=12, level=[95])
```
**Get Started with this [quick guide](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_short.html).**
**Follow this [end-to-end walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html) for best practices.**
## Why?
Current Python alternatives for statistical models are slow, inaccurate and don't scale well. So we created a library that can be used to forecast in production environments or as benchmarks. `StatsForecast` includes an extensive battery of models that can efficiently fit millions of time series.
## Features
* Fastest and most accurate implementations of `AutoARIMA`, `AutoETS`, `AutoCES`, `MSTL` and `Theta` in Python.
* Out-of-the-box compatibility with Spark, Dask, and Ray.
* Probabilistic Forecasting and Confidence Intervals.
* Support for exogenous Variables and static covariates.
* Anomaly Detection.
* Familiar sklearn syntax: `.fit` and `.predict`.
## Highlights
* Inclusion of `exogenous variables` and `prediction intervals` for ARIMA.
* 20x [faster](./experiments/arima/) than `pmdarima`.
* 1.5x faster than `R`.
* 500x faster than `Prophet`.
* 4x [faster](./experiments/ets/) than `statsmodels`.
* Compiled to high performance machine code through [`numba`](https://numba.pydata.org/).
* 1,000,000 series in [30 min](https://github.com/Nixtla/statsforecast/tree/main/experiments/ray) with [ray](https://github.com/ray-project/ray).
* Replace FB-Prophet in two lines of code and gain speed and accuracy. Check the experiments [here](https://github.com/Nixtla/statsforecast/tree/main/experiments/arima_prophet_adapter).
* Fit 10 benchmark models on **1,000,000** series in [under **5 min**](./experiments/benchmarks_at_scale/).
Missing something? Please open an issue or write us in [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlaworkspace/shared_invite/zt-135dssye9-fWTzMpv2WBthq8NK0Yvu6A)
## Examples and Guides
π [End to End Walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html): Model training, evaluation and selection for multiple time series
π [Anomaly Detection](https://nixtla.github.io/statsforecast/docs/tutorials/anomalydetection.html): detect anomalies for time series using in-sample prediction intervals.
π©βπ¬ [Cross Validation](https://nixtla.github.io/statsforecast/docs/tutorials/crossvalidation.html): robust modelβs performance evaluation.
βοΈ [Multiple Seasonalities](https://nixtla.github.io/statsforecast/docs/tutorials/multipleseasonalities.html): how to forecast data with multiple seasonalities using an MSTL.
π [Predict Demand Peaks](https://nixtla.github.io/statsforecast/docs/tutorials/electricitypeakforecasting.html): electricity load forecasting for detecting daily peaks and reducing electric bills.
π [Intermittent Demand](https://nixtla.github.io/statsforecast/docs/tutorials/intermittentdata.html): forecast series with very few non-zero observations.
π‘οΈ [Exogenous Regressors](https://nixtla.github.io/statsforecast/docs/how-to-guides/exogenous.html): like weather or prices
## Models
### Automatic Forecasting
Automatic forecasting tools search for the best parameters and select the best possible model for a group of time series. These tools are useful for large collections of univariate time series.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[AutoARIMA](https://nixtla.github.io/statsforecast/src/core/models.html#autoarima)|β
|β
|β
|β
|β
|
|[AutoETS](https://nixtla.github.io/statsforecast/src/core/models.html#autoets)|β
|β
|β
|β
||
|[AutoCES](https://nixtla.github.io/statsforecast/src/core/models.html#autoces)|β
|β
|β
|β
||
|[AutoTheta](https://nixtla.github.io/statsforecast/src/core/models.html#autotheta)|β
|β
|β
|β
||
### ARIMA Family
These models exploit the existing autocorrelations in the time series.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ARIMA](https://nixtla.github.io/statsforecast/src/core/models.html#arima)|β
|β
|β
|β
|β
|
|[AutoRegressive](https://nixtla.github.io/statsforecast/src/core/models.html#autoregressive)|β
|β
|β
|β
|β
|
### Theta Family
Fit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[Theta](https://nixtla.github.io/statsforecast/src/core/models.html#theta)|β
|β
|β
|β
||
|[OptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#optimizedtheta)|β
|β
|β
|β
||
|[DynamicTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamictheta)|β
|β
|β
|β
||
|[DynamicOptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamicoptimizedtheta)|β
|β
|β
|β
||
### Multiple Seasonalities
Suited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[MSTL](https://nixtla.github.io/statsforecast/src/core/models.html#mstl)|β
|β
|β
|β
|If trend forecaster supports|
### GARCH and ARCH Models
Suited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[GARCH](https://nixtla.github.io/statsforecast/src/core/models.html#garch)|β
|β
|β
|β
||
|[ARCH](https://nixtla.github.io/statsforecast/src/core/models.html#arch)|β
|β
|β
|β
||
### Baseline Models
Classical models for establishing baseline.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[HistoricAverage](https://nixtla.github.io/statsforecast/src/core/models.html#historicaverage)|β
|β
|β
|β
||
|[Naive](https://nixtla.github.io/statsforecast/src/core/models.html#naive)|β
|β
|β
|β
||
|[RandomWalkWithDrift](https://nixtla.github.io/statsforecast/src/core/models.html#randomwalkwithdrift)|β
|β
|β
|β
||
|[SeasonalNaive](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalnaive)|β
|β
|β
|β
||
|[WindowAverage](https://nixtla.github.io/statsforecast/src/core/models.html#windowaverage)|β
|||||
|[SeasonalWindowAverage](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalwindowaverage)|β
|||||
### Exponential Smoothing
Uses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the `SimpleExponential` family for data with no clear trend or seasonality.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[SimpleExponentialSmoothing](https://nixtla.github.io/statsforecast/src/core/models.html#simpleexponentialsmoothing)|β
|||||
|[SimpleExponentialSmoothingOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#simpleexponentialsmoothingoptimized)|β
|||||
|[SeasonalExponentialSmoothing](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalexponentialsmoothing)|β
|||||
|[SeasonalExponentialSmoothingOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalexponentialsmoothingoptimized)|β
|||||
|[Holt](https://nixtla.github.io/statsforecast/src/core/models.html#holt)|β
|β
|β
|β
||
|[HoltWinters](https://nixtla.github.io/statsforecast/src/core/models.html#holtwinters)|β
|β
|β
|β
||
### Sparse or Intermittent
Suited for series with very few non-zero observations
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ADIDA](https://nixtla.github.io/statsforecast/src/core/models.html#adida)|β
||β
|β
||
|[CrostonClassic](https://nixtla.github.io/statsforecast/src/core/models.html#crostonclassic)|β
||β
|β
||
|[CrostonOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#crostonoptimized)|β
||β
|β
||
|[CrostonSBA](https://nixtla.github.io/statsforecast/src/core/models.html#crostonsba)|β
||β
|β
||
|[IMAPA](https://nixtla.github.io/statsforecast/src/core/models.html#imapa)|β
||β
|β
||
|[TSB](https://nixtla.github.io/statsforecast/src/core/models.html#tsb)|β
||β
|β
||
## π¨ How to contribute
See [CONTRIBUTING.md](https://github.com/Nixtla/statsforecast/blob/main/CONTRIBUTING.md).
## Citing
```bibtex
@misc{garza2022statsforecast,
author={Azul Garza, Max Mergenthaler Canseco, Cristian ChallΓΊ, Kin G. Olivares},
title = {{StatsForecast}: Lightning fast forecasting with statistical and econometric models},
year={2022},
howpublished={{PyCon} Salt Lake City, Utah, US 2022},
url={https://github.com/Nixtla/statsforecast}
}
```
## Contributors β¨
Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tbody>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/AzulGarza"><img src="https://avatars.githubusercontent.com/u/10517170?v=4?s=100" width="100px;" alt="azul"/><br /><sub><b>azul</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=AzulGarza" title="Code">π»</a> <a href="#maintenance-AzulGarza" title="Maintenance">π§</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/jmoralez"><img src="https://avatars.githubusercontent.com/u/8473587?v=4?s=100" width="100px;" alt="JosΓ© Morales"/><br /><sub><b>JosΓ© Morales</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=jmoralez" title="Code">π»</a> <a href="#maintenance-jmoralez" title="Maintenance">π§</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/sugatoray/"><img src="https://avatars.githubusercontent.com/u/10201242?v=4?s=100" width="100px;" alt="Sugato Ray"/><br /><sub><b>Sugato Ray</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=sugatoray" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="http://www.jefftackes.com"><img src="https://avatars.githubusercontent.com/u/9125316?v=4?s=100" width="100px;" alt="Jeff Tackes"/><br /><sub><b>Jeff Tackes</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Atackes" title="Bug reports">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/darinkist"><img src="https://avatars.githubusercontent.com/u/62692170?v=4?s=100" width="100px;" alt="darinkist"/><br /><sub><b>darinkist</b></sub></a><br /><a href="#ideas-darinkist" title="Ideas, Planning, & Feedback">π€</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/alech97"><img src="https://avatars.githubusercontent.com/u/22159405?v=4?s=100" width="100px;" alt="Alec Helyar"/><br /><sub><b>Alec Helyar</b></sub></a><br /><a href="#question-alech97" title="Answering Questions">π¬</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://dhirschfeld.github.io"><img src="https://avatars.githubusercontent.com/u/881019?v=4?s=100" width="100px;" alt="Dave Hirschfeld"/><br /><sub><b>Dave Hirschfeld</b></sub></a><br /><a href="#question-dhirschfeld" title="Answering Questions">π¬</a></td>
</tr>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/mergenthaler"><img src="https://avatars.githubusercontent.com/u/4086186?v=4?s=100" width="100px;" alt="mergenthaler"/><br /><sub><b>mergenthaler</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=mergenthaler" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/kdgutier"><img src="https://avatars.githubusercontent.com/u/19935241?v=4?s=100" width="100px;" alt="Kin"/><br /><sub><b>Kin</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=kdgutier" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/Yasslight90"><img src="https://avatars.githubusercontent.com/u/58293883?v=4?s=100" width="100px;" alt="Yasslight90"/><br /><sub><b>Yasslight90</b></sub></a><br /><a href="#ideas-Yasslight90" title="Ideas, Planning, & Feedback">π€</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/asinig"><img src="https://avatars.githubusercontent.com/u/99350687?v=4?s=100" width="100px;" alt="asinig"/><br /><sub><b>asinig</b></sub></a><br /><a href="#ideas-asinig" title="Ideas, Planning, & Feedback">π€</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/guerda"><img src="https://avatars.githubusercontent.com/u/230782?v=4?s=100" width="100px;" alt="Philip GilliΓen"/><br /><sub><b>Philip GilliΓen</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=guerda" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/shagn"><img src="https://avatars.githubusercontent.com/u/16029092?v=4?s=100" width="100px;" alt="Sebastian Hagn"/><br /><sub><b>Sebastian Hagn</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Ashagn" title="Bug reports">π</a> <a href="https://github.com/Nixtla/statsforecast/commits?author=shagn" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/fugue-project/fugue"><img src="https://avatars.githubusercontent.com/u/21092479?v=4?s=100" width="100px;" alt="Han Wang"/><br /><sub><b>Han Wang</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=goodwanghan" title="Code">π»</a></td>
</tr>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/benjamin-jeffrey-218548a8/"><img src="https://avatars.githubusercontent.com/u/36240394?v=4?s=100" width="100px;" alt="Ben Jeffrey"/><br /><sub><b>Ben Jeffrey</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Abjeffrey92" title="Bug reports">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/Beliavsky"><img src="https://avatars.githubusercontent.com/u/38887928?v=4?s=100" width="100px;" alt="Beliavsky"/><br /><sub><b>Beliavsky</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=Beliavsky" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/MMenchero"><img src="https://avatars.githubusercontent.com/u/47995617?v=4?s=100" width="100px;" alt="Mariana Menchero GarcΓa "/><br /><sub><b>Mariana Menchero GarcΓa </b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=MMenchero" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/guptanick/"><img src="https://avatars.githubusercontent.com/u/33585645?v=4?s=100" width="100px;" alt="Nikhil Gupta"/><br /><sub><b>Nikhil Gupta</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Angupta23" title="Bug reports">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/jdegene"><img src="https://avatars.githubusercontent.com/u/17744939?v=4?s=100" width="100px;" alt="JD"/><br /><sub><b>JD</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Ajdegene" title="Bug reports">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/jattenberg"><img src="https://avatars.githubusercontent.com/u/924185?v=4?s=100" width="100px;" alt="josh attenberg"/><br /><sub><b>josh attenberg</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=jattenberg" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/JeroenPeterBos"><img src="https://avatars.githubusercontent.com/u/15342738?v=4?s=100" width="100px;" alt="JeroenPeterBos"/><br /><sub><b>JeroenPeterBos</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=JeroenPeterBos" title="Code">π»</a></td>
</tr>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/jvdd"><img src="https://avatars.githubusercontent.com/u/18898740?v=4?s=100" width="100px;" alt="Jeroen Van Der Donckt"/><br /><sub><b>Jeroen Van Der Donckt</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=jvdd" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/Roymprog"><img src="https://avatars.githubusercontent.com/u/4035367?v=4?s=100" width="100px;" alt="Roymprog"/><br /><sub><b>Roymprog</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=Roymprog" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/nelsoncardenas"><img src="https://avatars.githubusercontent.com/u/18086414?v=4?s=100" width="100px;" alt="Nelson CΓ‘rdenas BolaΓ±o"/><br /><sub><b>Nelson CΓ‘rdenas BolaΓ±o</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=nelsoncardenas" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/kschmaus"><img src="https://avatars.githubusercontent.com/u/6586847?v=4?s=100" width="100px;" alt="Kyle Schmaus"/><br /><sub><b>Kyle Schmaus</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=kschmaus" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/akmal-soliev/"><img src="https://avatars.githubusercontent.com/u/24494206?v=4?s=100" width="100px;" alt="Akmal Soliev"/><br /><sub><b>Akmal Soliev</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=akmalsoliev" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/nickto"><img src="https://avatars.githubusercontent.com/u/11967792?v=4?s=100" width="100px;" alt="Nick To"/><br /><sub><b>Nick To</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=nickto" title="Code">π»</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/kvnkho/"><img src="https://avatars.githubusercontent.com/u/32503212?v=4?s=100" width="100px;" alt="Kevin Kho"/><br /><sub><b>Kevin Kho</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=kvnkho" title="Code">π»</a></td>
</tr>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/yibenhuang"><img src="https://avatars.githubusercontent.com/u/62163340?v=4?s=100" width="100px;" alt="Yiben Huang"/><br /><sub><b>Yiben Huang</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=yibenhuang" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/andrewgross"><img src="https://avatars.githubusercontent.com/u/370118?v=4?s=100" width="100px;" alt="Andrew Gross"/><br /><sub><b>Andrew Gross</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=andrewgross" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/taniishkaaa"><img src="https://avatars.githubusercontent.com/u/109246904?v=4?s=100" width="100px;" alt="taniishkaaa"/><br /><sub><b>taniishkaaa</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=taniishkaaa" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://manuel.calzolari.name"><img src="https://avatars.githubusercontent.com/u/2764902?v=4?s=100" width="100px;" alt="Manuel Calzolari"/><br /><sub><b>Manuel Calzolari</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=manuel-calzolari" title="Code">π»</a></td>
</tr>
</tbody>
</table>
<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
Raw data
{
"_id": null,
"home_page": "https://github.com/Nixtla/statsforecast/",
"name": "statsforecast",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "time-series forecasting arima ets",
"author": "Nixtla",
"author_email": "business@nixtla.io",
"download_url": "https://files.pythonhosted.org/packages/37/05/36ae308c1130962c69df463f8a271507d625da8d6c995ee430bc94ec6704/statsforecast-2.0.0.tar.gz",
"platform": null,
"description": "# Nixtla [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Statistical%20Forecasting%20Algorithms%20by%20Nixtla%20&url=https://github.com/Nixtla/statsforecast&via=nixtlainc&hashtags=StatisticalModels,TimeSeries,Forecasting) [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlacommunity/shared_invite/zt-1pmhan9j5-F54XR20edHk0UtYAPcW4KQ)\n<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->\n[![All Contributors](https://img.shields.io/badge/all_contributors-32-orange.svg?style=flat-square)](#contributors-)\n<!-- ALL-CONTRIBUTORS-BADGE:END -->\n\n<div align=\"center\">\n<img src=\"https://raw.githubusercontent.com/Nixtla/neuralforecast/main/nbs/imgs_indx/logo_mid.png\">\n<h1 align=\"center\">Statistical \u26a1\ufe0f Forecast</h1>\n<h3 align=\"center\">Lightning fast forecasting with statistical and econometric models</h3>\n \n[![CI](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml/badge.svg?branch=main)](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml)\n[![Python](https://img.shields.io/pypi/pyversions/statsforecast)](https://pypi.org/project/statsforecast/)\n[![PyPi](https://img.shields.io/pypi/v/statsforecast?color=blue)](https://pypi.org/project/statsforecast/)\n[![conda-nixtla](https://img.shields.io/conda/vn/conda-forge/statsforecast?color=seagreen&label=conda)](https://anaconda.org/conda-forge/statsforecast)\n[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/Nixtla/statsforecast/blob/main/LICENSE)\n[![docs](https://img.shields.io/website-up-down-green-red/http/nixtla.github.io/statsforecast.svg?label=docs)](https://nixtla.github.io/statsforecast/)\n[![Downloads](https://pepy.tech/badge/statsforecast)](https://pepy.tech/project/statsforecast)\n \n**StatsForecast** offers a collection of widely used univariate time series forecasting models, including automatic `ARIMA`, `ETS`, `CES`, and `Theta` modeling optimized for high performance using `numba`. It also includes a large battery of benchmarking models.\n</div>\n\n## Installation\n\nYou can install `StatsForecast` with:\n\n```python\npip install statsforecast\n```\n\nor \n\n```python\nconda install -c conda-forge statsforecast\n``` \n\n\nVist our [Installation Guide](https://nixtla.github.io/statsforecast/docs/getting-started/installation.html) for further instructions.\n\n## Quick Start\n\n**Minimal Example**\n\n```python\nfrom statsforecast import StatsForecast\nfrom statsforecast.models import AutoARIMA\nfrom statsforecast.utils import AirPassengersDF\n\ndf = AirPassengersDF\nsf = StatsForecast(\n models = [AutoARIMA(season_length = 12)],\n freq = 'M'\n)\n\nsf.fit(df)\nsf.predict(h=12, level=[95])\n```\n\n**Get Started with this [quick guide](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_short.html).**\n\n**Follow this [end-to-end walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html) for best practices.**\n\n## Why? \n\nCurrent Python alternatives for statistical models are slow, inaccurate and don't scale well. So we created a library that can be used to forecast in production environments or as benchmarks. `StatsForecast` includes an extensive battery of models that can efficiently fit millions of time series.\n\n## Features\n\n* Fastest and most accurate implementations of `AutoARIMA`, `AutoETS`, `AutoCES`, `MSTL` and `Theta` in Python. \n* Out-of-the-box compatibility with Spark, Dask, and Ray.\n* Probabilistic Forecasting and Confidence Intervals.\n* Support for exogenous Variables and static covariates.\n* Anomaly Detection.\n* Familiar sklearn syntax: `.fit` and `.predict`.\n\n## Highlights\n\n* Inclusion of `exogenous variables` and `prediction intervals` for ARIMA.\n* 20x [faster](./experiments/arima/) than `pmdarima`.\n* 1.5x faster than `R`.\n* 500x faster than `Prophet`. \n* 4x [faster](./experiments/ets/) than `statsmodels`.\n* Compiled to high performance machine code through [`numba`](https://numba.pydata.org/).\n* 1,000,000 series in [30 min](https://github.com/Nixtla/statsforecast/tree/main/experiments/ray) with [ray](https://github.com/ray-project/ray).\n* Replace FB-Prophet in two lines of code and gain speed and accuracy. Check the experiments [here](https://github.com/Nixtla/statsforecast/tree/main/experiments/arima_prophet_adapter).\n* Fit 10 benchmark models on **1,000,000** series in [under **5 min**](./experiments/benchmarks_at_scale/). \n\n\nMissing something? Please open an issue or write us in [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlaworkspace/shared_invite/zt-135dssye9-fWTzMpv2WBthq8NK0Yvu6A)\n\n## Examples and Guides\n\n\ud83d\udcda [End to End Walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html): Model training, evaluation and selection for multiple time series\n\n\ud83d\udd0e [Anomaly Detection](https://nixtla.github.io/statsforecast/docs/tutorials/anomalydetection.html): detect anomalies for time series using in-sample prediction intervals.\n\n\ud83d\udc69\u200d\ud83d\udd2c [Cross Validation](https://nixtla.github.io/statsforecast/docs/tutorials/crossvalidation.html): robust model\u2019s performance evaluation.\n\n\u2744\ufe0f [Multiple Seasonalities](https://nixtla.github.io/statsforecast/docs/tutorials/multipleseasonalities.html): how to forecast data with multiple seasonalities using an MSTL.\n\n\ud83d\udd0c [Predict Demand Peaks](https://nixtla.github.io/statsforecast/docs/tutorials/electricitypeakforecasting.html): electricity load forecasting for detecting daily peaks and reducing electric bills.\n\n\ud83d\udcc8 [Intermittent Demand](https://nixtla.github.io/statsforecast/docs/tutorials/intermittentdata.html): forecast series with very few non-zero observations. \n\n\ud83c\udf21\ufe0f [Exogenous Regressors](https://nixtla.github.io/statsforecast/docs/how-to-guides/exogenous.html): like weather or prices\n\n\n## Models\n\n### Automatic Forecasting\nAutomatic forecasting tools search for the best parameters and select the best possible model for a group of time series. These tools are useful for large collections of univariate time series.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[AutoARIMA](https://nixtla.github.io/statsforecast/src/core/models.html#autoarima)|\u2705|\u2705|\u2705|\u2705|\u2705|\n|[AutoETS](https://nixtla.github.io/statsforecast/src/core/models.html#autoets)|\u2705|\u2705|\u2705|\u2705||\n|[AutoCES](https://nixtla.github.io/statsforecast/src/core/models.html#autoces)|\u2705|\u2705|\u2705|\u2705||\n|[AutoTheta](https://nixtla.github.io/statsforecast/src/core/models.html#autotheta)|\u2705|\u2705|\u2705|\u2705||\n\n### ARIMA Family\nThese models exploit the existing autocorrelations in the time series.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[ARIMA](https://nixtla.github.io/statsforecast/src/core/models.html#arima)|\u2705|\u2705|\u2705|\u2705|\u2705|\n|[AutoRegressive](https://nixtla.github.io/statsforecast/src/core/models.html#autoregressive)|\u2705|\u2705|\u2705|\u2705|\u2705|\n\n### Theta Family\nFit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[Theta](https://nixtla.github.io/statsforecast/src/core/models.html#theta)|\u2705|\u2705|\u2705|\u2705||\n|[OptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#optimizedtheta)|\u2705|\u2705|\u2705|\u2705||\n|[DynamicTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamictheta)|\u2705|\u2705|\u2705|\u2705||\n|[DynamicOptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamicoptimizedtheta)|\u2705|\u2705|\u2705|\u2705||\n\n### Multiple Seasonalities\nSuited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[MSTL](https://nixtla.github.io/statsforecast/src/core/models.html#mstl)|\u2705|\u2705|\u2705|\u2705|If trend forecaster supports|\n\n### GARCH and ARCH Models \nSuited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH. \n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[GARCH](https://nixtla.github.io/statsforecast/src/core/models.html#garch)|\u2705|\u2705|\u2705|\u2705||\n|[ARCH](https://nixtla.github.io/statsforecast/src/core/models.html#arch)|\u2705|\u2705|\u2705|\u2705||\n\n\n### Baseline Models\nClassical models for establishing baseline.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[HistoricAverage](https://nixtla.github.io/statsforecast/src/core/models.html#historicaverage)|\u2705|\u2705|\u2705|\u2705||\n|[Naive](https://nixtla.github.io/statsforecast/src/core/models.html#naive)|\u2705|\u2705|\u2705|\u2705||\n|[RandomWalkWithDrift](https://nixtla.github.io/statsforecast/src/core/models.html#randomwalkwithdrift)|\u2705|\u2705|\u2705|\u2705||\n|[SeasonalNaive](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalnaive)|\u2705|\u2705|\u2705|\u2705||\n|[WindowAverage](https://nixtla.github.io/statsforecast/src/core/models.html#windowaverage)|\u2705|||||\n|[SeasonalWindowAverage](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalwindowaverage)|\u2705|||||\n\n### Exponential Smoothing\nUses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the `SimpleExponential` family for data with no clear trend or seasonality.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[SimpleExponentialSmoothing](https://nixtla.github.io/statsforecast/src/core/models.html#simpleexponentialsmoothing)|\u2705|||||\n|[SimpleExponentialSmoothingOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#simpleexponentialsmoothingoptimized)|\u2705|||||\n|[SeasonalExponentialSmoothing](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalexponentialsmoothing)|\u2705|||||\n|[SeasonalExponentialSmoothingOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalexponentialsmoothingoptimized)|\u2705|||||\n|[Holt](https://nixtla.github.io/statsforecast/src/core/models.html#holt)|\u2705|\u2705|\u2705|\u2705||\n|[HoltWinters](https://nixtla.github.io/statsforecast/src/core/models.html#holtwinters)|\u2705|\u2705|\u2705|\u2705||\n\n\n### Sparse or Intermittent \nSuited for series with very few non-zero observations\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[ADIDA](https://nixtla.github.io/statsforecast/src/core/models.html#adida)|\u2705||\u2705|\u2705||\n|[CrostonClassic](https://nixtla.github.io/statsforecast/src/core/models.html#crostonclassic)|\u2705||\u2705|\u2705||\n|[CrostonOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#crostonoptimized)|\u2705||\u2705|\u2705||\n|[CrostonSBA](https://nixtla.github.io/statsforecast/src/core/models.html#crostonsba)|\u2705||\u2705|\u2705||\n|[IMAPA](https://nixtla.github.io/statsforecast/src/core/models.html#imapa)|\u2705||\u2705|\u2705||\n|[TSB](https://nixtla.github.io/statsforecast/src/core/models.html#tsb)|\u2705||\u2705|\u2705||\n\n## \ud83d\udd28 How to contribute\nSee [CONTRIBUTING.md](https://github.com/Nixtla/statsforecast/blob/main/CONTRIBUTING.md).\n\n## Citing\n\n```bibtex\n@misc{garza2022statsforecast,\n author={Azul Garza, Max Mergenthaler Canseco, Cristian Chall\u00fa, Kin G. Olivares},\n title = {{StatsForecast}: Lightning fast forecasting with statistical and econometric models},\n year={2022},\n howpublished={{PyCon} Salt Lake City, Utah, US 2022},\n url={https://github.com/Nixtla/statsforecast}\n}\n```\n\n## Contributors \u2728\n\nThanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):\n\n<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->\n<!-- prettier-ignore-start -->\n<!-- markdownlint-disable -->\n<table>\n <tbody>\n <tr>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/AzulGarza\"><img src=\"https://avatars.githubusercontent.com/u/10517170?v=4?s=100\" width=\"100px;\" alt=\"azul\"/><br /><sub><b>azul</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=AzulGarza\" title=\"Code\">\ud83d\udcbb</a> <a href=\"#maintenance-AzulGarza\" title=\"Maintenance\">\ud83d\udea7</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jmoralez\"><img src=\"https://avatars.githubusercontent.com/u/8473587?v=4?s=100\" width=\"100px;\" alt=\"Jos\u00e9 Morales\"/><br /><sub><b>Jos\u00e9 Morales</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=jmoralez\" title=\"Code\">\ud83d\udcbb</a> <a href=\"#maintenance-jmoralez\" title=\"Maintenance\">\ud83d\udea7</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/sugatoray/\"><img src=\"https://avatars.githubusercontent.com/u/10201242?v=4?s=100\" width=\"100px;\" alt=\"Sugato Ray\"/><br /><sub><b>Sugato Ray</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=sugatoray\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"http://www.jefftackes.com\"><img src=\"https://avatars.githubusercontent.com/u/9125316?v=4?s=100\" width=\"100px;\" alt=\"Jeff Tackes\"/><br /><sub><b>Jeff Tackes</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Atackes\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/darinkist\"><img src=\"https://avatars.githubusercontent.com/u/62692170?v=4?s=100\" width=\"100px;\" alt=\"darinkist\"/><br /><sub><b>darinkist</b></sub></a><br /><a href=\"#ideas-darinkist\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/alech97\"><img src=\"https://avatars.githubusercontent.com/u/22159405?v=4?s=100\" width=\"100px;\" alt=\"Alec Helyar\"/><br /><sub><b>Alec Helyar</b></sub></a><br /><a href=\"#question-alech97\" title=\"Answering Questions\">\ud83d\udcac</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://dhirschfeld.github.io\"><img src=\"https://avatars.githubusercontent.com/u/881019?v=4?s=100\" width=\"100px;\" alt=\"Dave Hirschfeld\"/><br /><sub><b>Dave Hirschfeld</b></sub></a><br /><a href=\"#question-dhirschfeld\" title=\"Answering Questions\">\ud83d\udcac</a></td>\n </tr>\n <tr>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/mergenthaler\"><img src=\"https://avatars.githubusercontent.com/u/4086186?v=4?s=100\" width=\"100px;\" alt=\"mergenthaler\"/><br /><sub><b>mergenthaler</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=mergenthaler\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/kdgutier\"><img src=\"https://avatars.githubusercontent.com/u/19935241?v=4?s=100\" width=\"100px;\" alt=\"Kin\"/><br /><sub><b>Kin</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=kdgutier\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/Yasslight90\"><img src=\"https://avatars.githubusercontent.com/u/58293883?v=4?s=100\" width=\"100px;\" alt=\"Yasslight90\"/><br /><sub><b>Yasslight90</b></sub></a><br /><a href=\"#ideas-Yasslight90\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/asinig\"><img src=\"https://avatars.githubusercontent.com/u/99350687?v=4?s=100\" width=\"100px;\" alt=\"asinig\"/><br /><sub><b>asinig</b></sub></a><br /><a href=\"#ideas-asinig\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/guerda\"><img src=\"https://avatars.githubusercontent.com/u/230782?v=4?s=100\" width=\"100px;\" alt=\"Philip Gilli\u00dfen\"/><br /><sub><b>Philip Gilli\u00dfen</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=guerda\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/shagn\"><img src=\"https://avatars.githubusercontent.com/u/16029092?v=4?s=100\" width=\"100px;\" alt=\"Sebastian Hagn\"/><br /><sub><b>Sebastian Hagn</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Ashagn\" title=\"Bug reports\">\ud83d\udc1b</a> <a href=\"https://github.com/Nixtla/statsforecast/commits?author=shagn\" title=\"Documentation\">\ud83d\udcd6</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/fugue-project/fugue\"><img src=\"https://avatars.githubusercontent.com/u/21092479?v=4?s=100\" width=\"100px;\" alt=\"Han Wang\"/><br /><sub><b>Han Wang</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=goodwanghan\" title=\"Code\">\ud83d\udcbb</a></td>\n </tr>\n <tr>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/benjamin-jeffrey-218548a8/\"><img src=\"https://avatars.githubusercontent.com/u/36240394?v=4?s=100\" width=\"100px;\" alt=\"Ben Jeffrey\"/><br /><sub><b>Ben Jeffrey</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Abjeffrey92\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/Beliavsky\"><img src=\"https://avatars.githubusercontent.com/u/38887928?v=4?s=100\" width=\"100px;\" alt=\"Beliavsky\"/><br /><sub><b>Beliavsky</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=Beliavsky\" title=\"Documentation\">\ud83d\udcd6</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/MMenchero\"><img src=\"https://avatars.githubusercontent.com/u/47995617?v=4?s=100\" width=\"100px;\" alt=\"Mariana Menchero Garc\u00eda \"/><br /><sub><b>Mariana Menchero Garc\u00eda </b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=MMenchero\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/guptanick/\"><img src=\"https://avatars.githubusercontent.com/u/33585645?v=4?s=100\" width=\"100px;\" alt=\"Nikhil Gupta\"/><br /><sub><b>Nikhil Gupta</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Angupta23\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jdegene\"><img src=\"https://avatars.githubusercontent.com/u/17744939?v=4?s=100\" width=\"100px;\" alt=\"JD\"/><br /><sub><b>JD</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Ajdegene\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jattenberg\"><img src=\"https://avatars.githubusercontent.com/u/924185?v=4?s=100\" width=\"100px;\" alt=\"josh attenberg\"/><br /><sub><b>josh attenberg</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=jattenberg\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/JeroenPeterBos\"><img src=\"https://avatars.githubusercontent.com/u/15342738?v=4?s=100\" width=\"100px;\" alt=\"JeroenPeterBos\"/><br /><sub><b>JeroenPeterBos</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=JeroenPeterBos\" title=\"Code\">\ud83d\udcbb</a></td>\n </tr>\n <tr>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jvdd\"><img src=\"https://avatars.githubusercontent.com/u/18898740?v=4?s=100\" width=\"100px;\" alt=\"Jeroen Van Der Donckt\"/><br /><sub><b>Jeroen Van Der Donckt</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=jvdd\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/Roymprog\"><img src=\"https://avatars.githubusercontent.com/u/4035367?v=4?s=100\" width=\"100px;\" alt=\"Roymprog\"/><br /><sub><b>Roymprog</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=Roymprog\" title=\"Documentation\">\ud83d\udcd6</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/nelsoncardenas\"><img src=\"https://avatars.githubusercontent.com/u/18086414?v=4?s=100\" width=\"100px;\" alt=\"Nelson C\u00e1rdenas Bola\u00f1o\"/><br /><sub><b>Nelson C\u00e1rdenas Bola\u00f1o</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=nelsoncardenas\" title=\"Documentation\">\ud83d\udcd6</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/kschmaus\"><img src=\"https://avatars.githubusercontent.com/u/6586847?v=4?s=100\" width=\"100px;\" alt=\"Kyle Schmaus\"/><br /><sub><b>Kyle Schmaus</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=kschmaus\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/akmal-soliev/\"><img src=\"https://avatars.githubusercontent.com/u/24494206?v=4?s=100\" width=\"100px;\" alt=\"Akmal Soliev\"/><br /><sub><b>Akmal Soliev</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=akmalsoliev\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/nickto\"><img src=\"https://avatars.githubusercontent.com/u/11967792?v=4?s=100\" width=\"100px;\" alt=\"Nick To\"/><br /><sub><b>Nick To</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=nickto\" title=\"Code\">\ud83d\udcbb</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/kvnkho/\"><img src=\"https://avatars.githubusercontent.com/u/32503212?v=4?s=100\" width=\"100px;\" alt=\"Kevin Kho\"/><br /><sub><b>Kevin Kho</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=kvnkho\" title=\"Code\">\ud83d\udcbb</a></td>\n </tr>\n <tr>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/yibenhuang\"><img src=\"https://avatars.githubusercontent.com/u/62163340?v=4?s=100\" width=\"100px;\" alt=\"Yiben Huang\"/><br /><sub><b>Yiben Huang</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=yibenhuang\" title=\"Documentation\">\ud83d\udcd6</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/andrewgross\"><img src=\"https://avatars.githubusercontent.com/u/370118?v=4?s=100\" width=\"100px;\" alt=\"Andrew Gross\"/><br /><sub><b>Andrew Gross</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=andrewgross\" title=\"Documentation\">\ud83d\udcd6</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/taniishkaaa\"><img src=\"https://avatars.githubusercontent.com/u/109246904?v=4?s=100\" width=\"100px;\" alt=\"taniishkaaa\"/><br /><sub><b>taniishkaaa</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=taniishkaaa\" title=\"Documentation\">\ud83d\udcd6</a></td>\n <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://manuel.calzolari.name\"><img src=\"https://avatars.githubusercontent.com/u/2764902?v=4?s=100\" width=\"100px;\" alt=\"Manuel Calzolari\"/><br /><sub><b>Manuel Calzolari</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=manuel-calzolari\" title=\"Code\">\ud83d\udcbb</a></td>\n </tr>\n </tbody>\n</table>\n\n<!-- markdownlint-restore -->\n<!-- prettier-ignore-end -->\n\n<!-- ALL-CONTRIBUTORS-LIST:END -->\n\nThis project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "Time series forecasting suite using statistical models",
"version": "2.0.0",
"project_urls": {
"Homepage": "https://github.com/Nixtla/statsforecast/"
},
"split_keywords": [
"time-series",
"forecasting",
"arima",
"ets"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "15159c7c6e0cb8d6542828338343ede779e60e93dde9549b1dccf18f32e0df19",
"md5": "9aa636d8849dba7828ebe880063aae6a",
"sha256": "ef7f2e97cdb0bc62561eacf6661fcbd05ebb997246ca850a8c736b01d17115a0"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "9aa636d8849dba7828ebe880063aae6a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 285274,
"upload_time": "2024-11-26T23:47:16",
"upload_time_iso_8601": "2024-11-26T23:47:16.056182Z",
"url": "https://files.pythonhosted.org/packages/15/15/9c7c6e0cb8d6542828338343ede779e60e93dde9549b1dccf18f32e0df19/statsforecast-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3edefd2552f16d7433d6311c93d9a0115aa286a10ce5981b0c374fef133669e8",
"md5": "b1cca7496db13c4d7bf0457fc047f025",
"sha256": "4f461160d08a73795c13e52a3eb2ba6fb234d2be8ef875c44149b887e0122a37"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "b1cca7496db13c4d7bf0457fc047f025",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 274137,
"upload_time": "2024-11-26T23:47:17",
"upload_time_iso_8601": "2024-11-26T23:47:17.798096Z",
"url": "https://files.pythonhosted.org/packages/3e/de/fd2552f16d7433d6311c93d9a0115aa286a10ce5981b0c374fef133669e8/statsforecast-2.0.0-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a615ad2516d232f765acbfb38e7300a7dbd523a10baf7d932d1101caf3b1041a",
"md5": "610b3f092c4f16aee40d688ff5f8f5d8",
"sha256": "2262b805b1f9cc7b72de0e9883cdcf857c8de86f26fb8dc2aac8cd91ae27a553"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "610b3f092c4f16aee40d688ff5f8f5d8",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 308760,
"upload_time": "2024-11-26T23:47:19",
"upload_time_iso_8601": "2024-11-26T23:47:19.390383Z",
"url": "https://files.pythonhosted.org/packages/a6/15/ad2516d232f765acbfb38e7300a7dbd523a10baf7d932d1101caf3b1041a/statsforecast-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6a93adbd94932494a82ebb131fc1332ed196d10c0f7b79d68b90735857769972",
"md5": "a092081d6fbb293cd5c0b7d5f092a557",
"sha256": "442ff2a076072c9cd2e0729741d5c86cce397ad387efee6b1608730ab7cbd440"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a092081d6fbb293cd5c0b7d5f092a557",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 319140,
"upload_time": "2024-11-26T23:47:21",
"upload_time_iso_8601": "2024-11-26T23:47:21.435112Z",
"url": "https://files.pythonhosted.org/packages/6a/93/adbd94932494a82ebb131fc1332ed196d10c0f7b79d68b90735857769972/statsforecast-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3ecebbad8d57c94ce49d78aefa55797ee0fc704fceca8b2e2faeb1a6916164ac",
"md5": "81f26516e7547e0f9cbfc9763765c8af",
"sha256": "125d4a9ad6a69f5600bc2df276c1b875236cfdb0c0044deeac45dd488d167c94"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "81f26516e7547e0f9cbfc9763765c8af",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 250658,
"upload_time": "2024-11-26T23:47:23",
"upload_time_iso_8601": "2024-11-26T23:47:23.512558Z",
"url": "https://files.pythonhosted.org/packages/3e/ce/bbad8d57c94ce49d78aefa55797ee0fc704fceca8b2e2faeb1a6916164ac/statsforecast-2.0.0-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2e98557c301f15ff729bfb6c6f79c925ccbe3ad5c8ba11a2cd0f6a906b3c993b",
"md5": "fcb0f628e9456a8d550712c74a0d3c95",
"sha256": "b50a6f917342a62f86e0673d2ddc37022d8cc084080942fd50f17270e3d3eff9"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "fcb0f628e9456a8d550712c74a0d3c95",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 286434,
"upload_time": "2024-11-26T23:47:24",
"upload_time_iso_8601": "2024-11-26T23:47:24.934839Z",
"url": "https://files.pythonhosted.org/packages/2e/98/557c301f15ff729bfb6c6f79c925ccbe3ad5c8ba11a2cd0f6a906b3c993b/statsforecast-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d851ba69d5bb347e33622b9594093a2a2ae417f42a06a48379b8ba5b8b8c4b0b",
"md5": "31b413f5c6c9954012e573ab85dbfb16",
"sha256": "2c2990c5b409061c1c658ecf5c44dd508c365d52e0447d5a10df8428ecfb6b99"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "31b413f5c6c9954012e573ab85dbfb16",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 275346,
"upload_time": "2024-11-26T23:47:26",
"upload_time_iso_8601": "2024-11-26T23:47:26.225615Z",
"url": "https://files.pythonhosted.org/packages/d8/51/ba69d5bb347e33622b9594093a2a2ae417f42a06a48379b8ba5b8b8c4b0b/statsforecast-2.0.0-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b0c6da04f1229bf1bc5470a1610acabaf19fc3390e3c975e8784070d44b2722e",
"md5": "f13801fb51101ee80f2596f72b79ff41",
"sha256": "5c0c8a10fb594b4187d1c0609d6d37ffac519628673ade0c1e7113ebb9de9269"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "f13801fb51101ee80f2596f72b79ff41",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 309698,
"upload_time": "2024-11-26T23:47:28",
"upload_time_iso_8601": "2024-11-26T23:47:28.949463Z",
"url": "https://files.pythonhosted.org/packages/b0/c6/da04f1229bf1bc5470a1610acabaf19fc3390e3c975e8784070d44b2722e/statsforecast-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d740d03b271d9518bdd90064ce46663b13112a083e14fa874d796130ed1a57cb",
"md5": "3b65daf6f9e189aefb109928f8382c4f",
"sha256": "55a4ca778e7c3df583da2b0eb74a72f9fef44f6789112dca6c1167e71815b05b"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3b65daf6f9e189aefb109928f8382c4f",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 319667,
"upload_time": "2024-11-26T23:47:30",
"upload_time_iso_8601": "2024-11-26T23:47:30.433492Z",
"url": "https://files.pythonhosted.org/packages/d7/40/d03b271d9518bdd90064ce46663b13112a083e14fa874d796130ed1a57cb/statsforecast-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "202b4a4e5b9313aa8fb82e0724acb5ef6dacf8def0207b3b1a1e06d1f5a58714",
"md5": "23d68028e0cd0a8d070ede57941014b0",
"sha256": "e923c86a0368b3b1a5fbde1c0bdfa0f6d07fd97aafaee0dc866d9c887edc1081"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "23d68028e0cd0a8d070ede57941014b0",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 251424,
"upload_time": "2024-11-26T23:47:32",
"upload_time_iso_8601": "2024-11-26T23:47:32.995390Z",
"url": "https://files.pythonhosted.org/packages/20/2b/4a4e5b9313aa8fb82e0724acb5ef6dacf8def0207b3b1a1e06d1f5a58714/statsforecast-2.0.0-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5359cce6c851f036de37f9c70e2f6446e2edefb689a3fb0d4c304c540b5effad",
"md5": "3b5230aa756852ce580bec87fcd04503",
"sha256": "8a15cec36962763e35fb04e4721d2e7e58629785ab74dacdebc6aab9a81492e6"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp312-cp312-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "3b5230aa756852ce580bec87fcd04503",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 286647,
"upload_time": "2024-11-26T23:47:34",
"upload_time_iso_8601": "2024-11-26T23:47:34.442526Z",
"url": "https://files.pythonhosted.org/packages/53/59/cce6c851f036de37f9c70e2f6446e2edefb689a3fb0d4c304c540b5effad/statsforecast-2.0.0-cp312-cp312-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3b6b534454cea4fd9dbd0d2c44c61f2d906bfbd45455e79cac59eae2a3ccaa13",
"md5": "dc977635bf3407bd0bd19bbde8908a71",
"sha256": "04e15f8a9222f258437986505bf349da4b1953c6fb7226b3a13103d125e238e1"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "dc977635bf3407bd0bd19bbde8908a71",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 274587,
"upload_time": "2024-11-26T23:47:35",
"upload_time_iso_8601": "2024-11-26T23:47:35.842099Z",
"url": "https://files.pythonhosted.org/packages/3b/6b/534454cea4fd9dbd0d2c44c61f2d906bfbd45455e79cac59eae2a3ccaa13/statsforecast-2.0.0-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4762bbf7a562e7391d824a032c870448473cc3c274c3071470d7a9a9a29147a9",
"md5": "5d7e78f3343d3a5119a95aed5a925f71",
"sha256": "124fd23847f82795484d23620e6111e28742ec44c1dd4f747a87d3092bf120cd"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "5d7e78f3343d3a5119a95aed5a925f71",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 307672,
"upload_time": "2024-11-26T23:47:37",
"upload_time_iso_8601": "2024-11-26T23:47:37.241434Z",
"url": "https://files.pythonhosted.org/packages/47/62/bbf7a562e7391d824a032c870448473cc3c274c3071470d7a9a9a29147a9/statsforecast-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "16ec263ad7a692b6a206f47e51e7f34430fbccb97e41bfb85dbcf658619f9365",
"md5": "7324838abc694c5a4fdad9ca7b7ad195",
"sha256": "a57617376ccc94aa973565136d3c94014323094f2a64c9791b20c99d504bf77a"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "7324838abc694c5a4fdad9ca7b7ad195",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 319504,
"upload_time": "2024-11-26T23:47:38",
"upload_time_iso_8601": "2024-11-26T23:47:38.662736Z",
"url": "https://files.pythonhosted.org/packages/16/ec/263ad7a692b6a206f47e51e7f34430fbccb97e41bfb85dbcf658619f9365/statsforecast-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e208fbc4f3afc05c1d8922d180cd9a11638aed83641abf89dba7b415c80cd024",
"md5": "5f0b7889c182a74fbcacb165d58e1cc0",
"sha256": "fd3d947146180536664d8d90f103ab688856267f5de28c576871f252c6973b50"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "5f0b7889c182a74fbcacb165d58e1cc0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 252064,
"upload_time": "2024-11-26T23:47:39",
"upload_time_iso_8601": "2024-11-26T23:47:39.990798Z",
"url": "https://files.pythonhosted.org/packages/e2/08/fbc4f3afc05c1d8922d180cd9a11638aed83641abf89dba7b415c80cd024/statsforecast-2.0.0-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a776e83b07506aa6453258129a978e29d5d6753737c8a71f2670887bacd74888",
"md5": "58a89b1ae4705f78aebe0107b3f3eb7e",
"sha256": "0cd3940910be16a7be08d1a9ccddff87ef8ed867f4d9cf63b7ab7171896fc0a4"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "58a89b1ae4705f78aebe0107b3f3eb7e",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 285363,
"upload_time": "2024-11-26T23:47:41",
"upload_time_iso_8601": "2024-11-26T23:47:41.317039Z",
"url": "https://files.pythonhosted.org/packages/a7/76/e83b07506aa6453258129a978e29d5d6753737c8a71f2670887bacd74888/statsforecast-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "15d5604bb25fbd35fbc3c024d6af752d4eaace5068c8ffc1369d917e299985f7",
"md5": "c426155756a9a288e554bba7459777e6",
"sha256": "7206a83d1f082538f09de8c5a4f02b9a48c0acf432f9b98016c147468113d64f"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "c426155756a9a288e554bba7459777e6",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 274249,
"upload_time": "2024-11-26T23:47:42",
"upload_time_iso_8601": "2024-11-26T23:47:42.688401Z",
"url": "https://files.pythonhosted.org/packages/15/d5/604bb25fbd35fbc3c024d6af752d4eaace5068c8ffc1369d917e299985f7/statsforecast-2.0.0-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7302be0e56edf80dfc75c6086db0799fb8712e15d1caed846d79bff5b7ea6044",
"md5": "aaaf198325fec97e77c043b445767df7",
"sha256": "f5f3e4f4a0b3389dd8856005ebfb3b9cb7c97df268701724afde37eb040c1b95"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "aaaf198325fec97e77c043b445767df7",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 309591,
"upload_time": "2024-11-26T23:47:44",
"upload_time_iso_8601": "2024-11-26T23:47:44.036645Z",
"url": "https://files.pythonhosted.org/packages/73/02/be0e56edf80dfc75c6086db0799fb8712e15d1caed846d79bff5b7ea6044/statsforecast-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b17e04437d31308f73a9e87871777f08f31e8b5baa9cf2efb36247f70b07c3f4",
"md5": "a4bcb0cef1eb808e3d80bdc0f29779d4",
"sha256": "9f442373f7f371d2131e6557da5d9540b89fa65819a2f6bd0b08ee55d6fee1d8"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a4bcb0cef1eb808e3d80bdc0f29779d4",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 319682,
"upload_time": "2024-11-26T23:47:45",
"upload_time_iso_8601": "2024-11-26T23:47:45.568153Z",
"url": "https://files.pythonhosted.org/packages/b1/7e/04437d31308f73a9e87871777f08f31e8b5baa9cf2efb36247f70b07c3f4/statsforecast-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b05c19007c1a2b083a241eb37daee1a23de56f3131ce17d9bdfcff2e985709bd",
"md5": "f46cd7e2cd18f56eb88b53c535f1a2ad",
"sha256": "e26c1b981e2c6967aa20b84d1009639ba2df1b1c9a6bdc583a002e4ad231bd6a"
},
"downloads": -1,
"filename": "statsforecast-2.0.0-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "f46cd7e2cd18f56eb88b53c535f1a2ad",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 248609,
"upload_time": "2024-11-26T23:47:47",
"upload_time_iso_8601": "2024-11-26T23:47:47.093962Z",
"url": "https://files.pythonhosted.org/packages/b0/5c/19007c1a2b083a241eb37daee1a23de56f3131ce17d9bdfcff2e985709bd/statsforecast-2.0.0-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "370536ae308c1130962c69df463f8a271507d625da8d6c995ee430bc94ec6704",
"md5": "a4cbc930acd84d1755083d5a2fcccf35",
"sha256": "7bd7145c1b0abeb672c9d7334d3f8eb51d28c9ce61465a3321d375c3f099c6b9"
},
"downloads": -1,
"filename": "statsforecast-2.0.0.tar.gz",
"has_sig": false,
"md5_digest": "a4cbc930acd84d1755083d5a2fcccf35",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 2879690,
"upload_time": "2024-11-26T23:47:48",
"upload_time_iso_8601": "2024-11-26T23:47:48.592878Z",
"url": "https://files.pythonhosted.org/packages/37/05/36ae308c1130962c69df463f8a271507d625da8d6c995ee430bc94ec6704/statsforecast-2.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-26 23:47:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Nixtla",
"github_project": "statsforecast",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "statsforecast"
}