statsforecast


Namestatsforecast JSON
Version 2.0.1 PyPI version JSON
download
home_pagehttps://github.com/Nixtla/statsforecast/
SummaryTime series forecasting suite using statistical models
upload_time2025-02-18 19:42:44
maintainerNone
docs_urlNone
authorNixtla
requires_python>=3.9
licenseApache Software License 2.0
keywords time-series forecasting arima ets
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Nixtla   [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Statistical%20Forecasting%20Algorithms%20by%20Nixtla%20&url=https://github.com/Nixtla/statsforecast&via=nixtlainc&hashtags=StatisticalModels,TimeSeries,Forecasting)  [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlacommunity/shared_invite/zt-1pmhan9j5-F54XR20edHk0UtYAPcW4KQ)
<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
[![All Contributors](https://img.shields.io/badge/all_contributors-32-orange.svg?style=flat-square)](#contributors-)
<!-- ALL-CONTRIBUTORS-BADGE:END -->

<div align="center">
<img src="https://raw.githubusercontent.com/Nixtla/neuralforecast/main/nbs/imgs_indx/logo_mid.png">
<h1 align="center">Statistical ⚑️ Forecast</h1>
<h3 align="center">Lightning fast forecasting with statistical and econometric models</h3>
    
[![CI](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml/badge.svg?branch=main)](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml)
[![Python](https://img.shields.io/pypi/pyversions/statsforecast)](https://pypi.org/project/statsforecast/)
[![PyPi](https://img.shields.io/pypi/v/statsforecast?color=blue)](https://pypi.org/project/statsforecast/)
[![conda-nixtla](https://img.shields.io/conda/vn/conda-forge/statsforecast?color=seagreen&label=conda)](https://anaconda.org/conda-forge/statsforecast)
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/Nixtla/statsforecast/blob/main/LICENSE)
[![docs](https://img.shields.io/website-up-down-green-red/http/nixtla.github.io/statsforecast.svg?label=docs)](https://nixtla.github.io/statsforecast/)
[![Downloads](https://pepy.tech/badge/statsforecast)](https://pepy.tech/project/statsforecast)
    
**StatsForecast** offers a collection of widely used univariate time series forecasting models, including automatic `ARIMA`, `ETS`, `CES`, and `Theta` modeling optimized for high performance using `numba`. It also includes a large battery of benchmarking models.
</div>

## Installation

You can install `StatsForecast` with:

```python
pip install statsforecast
```

or 

```python
conda install -c conda-forge statsforecast
``` 


Vist our [Installation Guide](https://nixtla.github.io/statsforecast/docs/getting-started/installation.html) for further instructions.

## Quick Start

**Minimal Example**

```python
from statsforecast import StatsForecast
from statsforecast.models import AutoARIMA
from statsforecast.utils import AirPassengersDF

df = AirPassengersDF
sf = StatsForecast(
    models=[AutoARIMA(season_length=12)],
    freq='ME',
)
sf.fit(df)
sf.predict(h=12, level=[95])
```

**Get Started with this [quick guide](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_short.html).**

**Follow this [end-to-end walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html) for best practices.**

## Why? 

Current Python alternatives for statistical models are slow, inaccurate and don't scale well. So we created a library that can be used to forecast in production environments or as benchmarks.  `StatsForecast` includes an extensive battery of models that can efficiently fit millions of time series.

## Features

* Fastest and most accurate implementations of `AutoARIMA`, `AutoETS`, `AutoCES`, `MSTL` and `Theta` in Python. 
* Out-of-the-box compatibility with Spark, Dask, and Ray.
* Probabilistic Forecasting and Confidence Intervals.
* Support for exogenous Variables and static covariates.
* Anomaly Detection.
* Familiar sklearn syntax: `.fit` and `.predict`.

## Highlights

* Inclusion of `exogenous variables` and `prediction intervals` for ARIMA.
* 20x [faster](./experiments/arima/) than `pmdarima`.
* 1.5x faster than `R`.
* 500x faster than `Prophet`. 
* 4x [faster](./experiments/ets/) than `statsmodels`.
* Compiled to high performance machine code through [`numba`](https://numba.pydata.org/).
* 1,000,000 series in [30 min](https://github.com/Nixtla/statsforecast/tree/main/experiments/ray) with [ray](https://github.com/ray-project/ray).
* Replace FB-Prophet in two lines of code and gain speed and accuracy. Check the experiments [here](https://github.com/Nixtla/statsforecast/tree/main/experiments/arima_prophet_adapter).
* Fit 10 benchmark models on **1,000,000** series in [under **5 min**](./experiments/benchmarks_at_scale/). 


Missing something? Please open an issue or write us in [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlaworkspace/shared_invite/zt-135dssye9-fWTzMpv2WBthq8NK0Yvu6A)

## Examples and Guides

πŸ“š [End to End Walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html): Model training, evaluation and selection for multiple time series

πŸ”Ž [Anomaly Detection](https://nixtla.github.io/statsforecast/docs/tutorials/anomalydetection.html): detect anomalies for time series using in-sample prediction intervals.

πŸ‘©β€πŸ”¬ [Cross Validation](https://nixtla.github.io/statsforecast/docs/tutorials/crossvalidation.html): robust model’s performance evaluation.

❄️ [Multiple Seasonalities](https://nixtla.github.io/statsforecast/docs/tutorials/multipleseasonalities.html): how to forecast data with multiple seasonalities using an MSTL.

πŸ”Œ [Predict Demand Peaks](https://nixtla.github.io/statsforecast/docs/tutorials/electricitypeakforecasting.html): electricity load forecasting for detecting daily peaks and reducing electric bills.

πŸ“ˆ [Intermittent Demand](https://nixtla.github.io/statsforecast/docs/tutorials/intermittentdata.html): forecast series with very few non-zero observations. 

🌑️ [Exogenous Regressors](https://nixtla.github.io/statsforecast/docs/how-to-guides/exogenous.html): like weather or prices


## Models

### Automatic Forecasting
Automatic forecasting tools search for the best parameters and select the best possible model for a group of time series. These tools are useful for large collections of univariate time series.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[AutoARIMA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoarima)|βœ…|βœ…|βœ…|βœ…|βœ…|
|[AutoETS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoets)|βœ…|βœ…|βœ…|βœ…||
|[AutoCES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoces)|βœ…|βœ…|βœ…|βœ…||
|[AutoTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autotheta)|βœ…|βœ…|βœ…|βœ…||
|[AutoMFLES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#automfles)|βœ…|βœ…|βœ…|βœ…|βœ…|
|[AutoTBATS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autotbats)|βœ…|βœ…|βœ…|βœ…||

### ARIMA Family
These models exploit the existing autocorrelations in the time series.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ARIMA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#arima)|βœ…|βœ…|βœ…|βœ…|βœ…|
|[AutoRegressive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoregressive)|βœ…|βœ…|βœ…|βœ…|βœ…|

### Theta Family
Fit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[Theta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#theta)|βœ…|βœ…|βœ…|βœ…||
|[OptimizedTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#optimizedtheta)|βœ…|βœ…|βœ…|βœ…||
|[DynamicTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#dynamictheta)|βœ…|βœ…|βœ…|βœ…||
|[DynamicOptimizedTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#dynamicoptimizedtheta)|βœ…|βœ…|βœ…|βœ…||


### Multiple Seasonalities
Suited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[MSTL](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#mstl)|βœ…|βœ…|βœ…|βœ…|If trend forecaster supports|
|[MFLES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#mfles)|βœ…|βœ…|βœ…|βœ…|βœ…|
|[TBATS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#tbats)|βœ…|βœ…|βœ…|βœ…||

### GARCH and ARCH Models 
Suited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH. 

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[GARCH](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#garch)|βœ…|βœ…|βœ…|βœ…||
|[ARCH](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#arch)|βœ…|βœ…|βœ…|βœ…||

### Baseline Models
Classical models for establishing baseline.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[HistoricAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#historicaverage)|βœ…|βœ…|βœ…|βœ…||
|[Naive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#naive)|βœ…|βœ…|βœ…|βœ…||
|[RandomWalkWithDrift](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#randomwalkwithdrift)|βœ…|βœ…|βœ…|βœ…||
|[SeasonalNaive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalnaive)|βœ…|βœ…|βœ…|βœ…||
|[WindowAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#windowaverage)|βœ…|||||
|[SeasonalWindowAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalwindowaverage)|βœ…|||||

### Exponential Smoothing
Uses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the `SimpleExponential` family for data with no clear trend or seasonality.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[SimpleExponentialSmoothing](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#simpleexponentialsmoothing)|βœ…||βœ…|||
|[SimpleExponentialSmoothingOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#simpleexponentialsmoothingoptimized)|βœ…||βœ…|||
|[SeasonalExponentialSmoothing](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalexponentialsmoothing)|βœ…||βœ…|||
|[SeasonalExponentialSmoothingOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalexponentialsmoothingoptimized)|βœ…||βœ…|||
|[Holt](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#holt)|βœ…|βœ…|βœ…|βœ…||
|[HoltWinters](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#holtwinters)|βœ…|βœ…|βœ…|βœ…||

### Sparse or Inttermitent
Suited for series with very few non-zero observations

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ADIDA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#adida)|βœ…||βœ…|βœ…||
|[CrostonClassic](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonclassic)|βœ…||βœ…|βœ…||
|[CrostonOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonoptimized)|βœ…||βœ…|βœ…||
|[CrostonSBA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonsba)|βœ…||βœ…|βœ…||
|[IMAPA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#imapa)|βœ…||βœ…|βœ…||
|[TSB](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#tsb)|βœ…||βœ…|βœ…||

## πŸ”¨ How to contribute
See [CONTRIBUTING.md](https://github.com/Nixtla/statsforecast/blob/main/CONTRIBUTING.md).

## Citing

```bibtex
@misc{garza2022statsforecast,
    author={Azul Garza, Max Mergenthaler Canseco, Cristian ChallΓΊ, Kin G. Olivares},
    title = {{StatsForecast}: Lightning fast forecasting with statistical and econometric models},
    year={2022},
    howpublished={{PyCon} Salt Lake City, Utah, US 2022},
    url={https://github.com/Nixtla/statsforecast}
}
```

## Contributors ✨

Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
  <tbody>
    <tr>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/AzulGarza"><img src="https://avatars.githubusercontent.com/u/10517170?v=4?s=100" width="100px;" alt="azul"/><br /><sub><b>azul</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=AzulGarza" title="Code">πŸ’»</a> <a href="#maintenance-AzulGarza" title="Maintenance">🚧</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/jmoralez"><img src="https://avatars.githubusercontent.com/u/8473587?v=4?s=100" width="100px;" alt="JosΓ© Morales"/><br /><sub><b>JosΓ© Morales</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=jmoralez" title="Code">πŸ’»</a> <a href="#maintenance-jmoralez" title="Maintenance">🚧</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/sugatoray/"><img src="https://avatars.githubusercontent.com/u/10201242?v=4?s=100" width="100px;" alt="Sugato Ray"/><br /><sub><b>Sugato Ray</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=sugatoray" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="http://www.jefftackes.com"><img src="https://avatars.githubusercontent.com/u/9125316?v=4?s=100" width="100px;" alt="Jeff Tackes"/><br /><sub><b>Jeff Tackes</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Atackes" title="Bug reports">πŸ›</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/darinkist"><img src="https://avatars.githubusercontent.com/u/62692170?v=4?s=100" width="100px;" alt="darinkist"/><br /><sub><b>darinkist</b></sub></a><br /><a href="#ideas-darinkist" title="Ideas, Planning, & Feedback">πŸ€”</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/alech97"><img src="https://avatars.githubusercontent.com/u/22159405?v=4?s=100" width="100px;" alt="Alec Helyar"/><br /><sub><b>Alec Helyar</b></sub></a><br /><a href="#question-alech97" title="Answering Questions">πŸ’¬</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://dhirschfeld.github.io"><img src="https://avatars.githubusercontent.com/u/881019?v=4?s=100" width="100px;" alt="Dave Hirschfeld"/><br /><sub><b>Dave Hirschfeld</b></sub></a><br /><a href="#question-dhirschfeld" title="Answering Questions">πŸ’¬</a></td>
    </tr>
    <tr>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/mergenthaler"><img src="https://avatars.githubusercontent.com/u/4086186?v=4?s=100" width="100px;" alt="mergenthaler"/><br /><sub><b>mergenthaler</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=mergenthaler" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/kdgutier"><img src="https://avatars.githubusercontent.com/u/19935241?v=4?s=100" width="100px;" alt="Kin"/><br /><sub><b>Kin</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=kdgutier" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/Yasslight90"><img src="https://avatars.githubusercontent.com/u/58293883?v=4?s=100" width="100px;" alt="Yasslight90"/><br /><sub><b>Yasslight90</b></sub></a><br /><a href="#ideas-Yasslight90" title="Ideas, Planning, & Feedback">πŸ€”</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/asinig"><img src="https://avatars.githubusercontent.com/u/99350687?v=4?s=100" width="100px;" alt="asinig"/><br /><sub><b>asinig</b></sub></a><br /><a href="#ideas-asinig" title="Ideas, Planning, & Feedback">πŸ€”</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/guerda"><img src="https://avatars.githubusercontent.com/u/230782?v=4?s=100" width="100px;" alt="Philip Gillißen"/><br /><sub><b>Philip Gillißen</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=guerda" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/shagn"><img src="https://avatars.githubusercontent.com/u/16029092?v=4?s=100" width="100px;" alt="Sebastian Hagn"/><br /><sub><b>Sebastian Hagn</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Ashagn" title="Bug reports">πŸ›</a> <a href="https://github.com/Nixtla/statsforecast/commits?author=shagn" title="Documentation">πŸ“–</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/fugue-project/fugue"><img src="https://avatars.githubusercontent.com/u/21092479?v=4?s=100" width="100px;" alt="Han Wang"/><br /><sub><b>Han Wang</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=goodwanghan" title="Code">πŸ’»</a></td>
    </tr>
    <tr>
      <td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/benjamin-jeffrey-218548a8/"><img src="https://avatars.githubusercontent.com/u/36240394?v=4?s=100" width="100px;" alt="Ben Jeffrey"/><br /><sub><b>Ben Jeffrey</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Abjeffrey92" title="Bug reports">πŸ›</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/Beliavsky"><img src="https://avatars.githubusercontent.com/u/38887928?v=4?s=100" width="100px;" alt="Beliavsky"/><br /><sub><b>Beliavsky</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=Beliavsky" title="Documentation">πŸ“–</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/MMenchero"><img src="https://avatars.githubusercontent.com/u/47995617?v=4?s=100" width="100px;" alt="Mariana Menchero GarcΓ­a "/><br /><sub><b>Mariana Menchero GarcΓ­a </b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=MMenchero" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/guptanick/"><img src="https://avatars.githubusercontent.com/u/33585645?v=4?s=100" width="100px;" alt="Nikhil Gupta"/><br /><sub><b>Nikhil Gupta</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Angupta23" title="Bug reports">πŸ›</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/jdegene"><img src="https://avatars.githubusercontent.com/u/17744939?v=4?s=100" width="100px;" alt="JD"/><br /><sub><b>JD</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/issues?q=author%3Ajdegene" title="Bug reports">πŸ›</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/jattenberg"><img src="https://avatars.githubusercontent.com/u/924185?v=4?s=100" width="100px;" alt="josh attenberg"/><br /><sub><b>josh attenberg</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=jattenberg" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/JeroenPeterBos"><img src="https://avatars.githubusercontent.com/u/15342738?v=4?s=100" width="100px;" alt="JeroenPeterBos"/><br /><sub><b>JeroenPeterBos</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=JeroenPeterBos" title="Code">πŸ’»</a></td>
    </tr>
    <tr>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/jvdd"><img src="https://avatars.githubusercontent.com/u/18898740?v=4?s=100" width="100px;" alt="Jeroen Van Der Donckt"/><br /><sub><b>Jeroen Van Der Donckt</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=jvdd" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/Roymprog"><img src="https://avatars.githubusercontent.com/u/4035367?v=4?s=100" width="100px;" alt="Roymprog"/><br /><sub><b>Roymprog</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=Roymprog" title="Documentation">πŸ“–</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/nelsoncardenas"><img src="https://avatars.githubusercontent.com/u/18086414?v=4?s=100" width="100px;" alt="Nelson CΓ‘rdenas BolaΓ±o"/><br /><sub><b>Nelson CΓ‘rdenas BolaΓ±o</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=nelsoncardenas" title="Documentation">πŸ“–</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/kschmaus"><img src="https://avatars.githubusercontent.com/u/6586847?v=4?s=100" width="100px;" alt="Kyle Schmaus"/><br /><sub><b>Kyle Schmaus</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=kschmaus" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/akmal-soliev/"><img src="https://avatars.githubusercontent.com/u/24494206?v=4?s=100" width="100px;" alt="Akmal Soliev"/><br /><sub><b>Akmal Soliev</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=akmalsoliev" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/nickto"><img src="https://avatars.githubusercontent.com/u/11967792?v=4?s=100" width="100px;" alt="Nick To"/><br /><sub><b>Nick To</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=nickto" title="Code">πŸ’»</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/kvnkho/"><img src="https://avatars.githubusercontent.com/u/32503212?v=4?s=100" width="100px;" alt="Kevin Kho"/><br /><sub><b>Kevin Kho</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=kvnkho" title="Code">πŸ’»</a></td>
    </tr>
    <tr>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/yibenhuang"><img src="https://avatars.githubusercontent.com/u/62163340?v=4?s=100" width="100px;" alt="Yiben Huang"/><br /><sub><b>Yiben Huang</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=yibenhuang" title="Documentation">πŸ“–</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/andrewgross"><img src="https://avatars.githubusercontent.com/u/370118?v=4?s=100" width="100px;" alt="Andrew Gross"/><br /><sub><b>Andrew Gross</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=andrewgross" title="Documentation">πŸ“–</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/taniishkaaa"><img src="https://avatars.githubusercontent.com/u/109246904?v=4?s=100" width="100px;" alt="taniishkaaa"/><br /><sub><b>taniishkaaa</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=taniishkaaa" title="Documentation">πŸ“–</a></td>
      <td align="center" valign="top" width="14.28%"><a href="https://manuel.calzolari.name"><img src="https://avatars.githubusercontent.com/u/2764902?v=4?s=100" width="100px;" alt="Manuel Calzolari"/><br /><sub><b>Manuel Calzolari</b></sub></a><br /><a href="https://github.com/Nixtla/statsforecast/commits?author=manuel-calzolari" title="Code">πŸ’»</a></td>
    </tr>
  </tbody>
</table>

<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->

<!-- ALL-CONTRIBUTORS-LIST:END -->

This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Nixtla/statsforecast/",
    "name": "statsforecast",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "time-series forecasting arima ets",
    "author": "Nixtla",
    "author_email": "business@nixtla.io",
    "download_url": "https://files.pythonhosted.org/packages/b9/5b/7fbf787cc947ff358d3a4ec81911f0386aca66d643fdd5128f599a901479/statsforecast-2.0.1.tar.gz",
    "platform": null,
    "description": "# Nixtla &nbsp; [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Statistical%20Forecasting%20Algorithms%20by%20Nixtla%20&url=https://github.com/Nixtla/statsforecast&via=nixtlainc&hashtags=StatisticalModels,TimeSeries,Forecasting) &nbsp;[![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlacommunity/shared_invite/zt-1pmhan9j5-F54XR20edHk0UtYAPcW4KQ)\n<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->\n[![All Contributors](https://img.shields.io/badge/all_contributors-32-orange.svg?style=flat-square)](#contributors-)\n<!-- ALL-CONTRIBUTORS-BADGE:END -->\n\n<div align=\"center\">\n<img src=\"https://raw.githubusercontent.com/Nixtla/neuralforecast/main/nbs/imgs_indx/logo_mid.png\">\n<h1 align=\"center\">Statistical \u26a1\ufe0f Forecast</h1>\n<h3 align=\"center\">Lightning fast forecasting with statistical and econometric models</h3>\n    \n[![CI](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml/badge.svg?branch=main)](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml)\n[![Python](https://img.shields.io/pypi/pyversions/statsforecast)](https://pypi.org/project/statsforecast/)\n[![PyPi](https://img.shields.io/pypi/v/statsforecast?color=blue)](https://pypi.org/project/statsforecast/)\n[![conda-nixtla](https://img.shields.io/conda/vn/conda-forge/statsforecast?color=seagreen&label=conda)](https://anaconda.org/conda-forge/statsforecast)\n[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/Nixtla/statsforecast/blob/main/LICENSE)\n[![docs](https://img.shields.io/website-up-down-green-red/http/nixtla.github.io/statsforecast.svg?label=docs)](https://nixtla.github.io/statsforecast/)\n[![Downloads](https://pepy.tech/badge/statsforecast)](https://pepy.tech/project/statsforecast)\n    \n**StatsForecast** offers a collection of widely used univariate time series forecasting models, including automatic `ARIMA`, `ETS`, `CES`, and `Theta` modeling optimized for high performance using `numba`. It also includes a large battery of benchmarking models.\n</div>\n\n## Installation\n\nYou can install `StatsForecast` with:\n\n```python\npip install statsforecast\n```\n\nor \n\n```python\nconda install -c conda-forge statsforecast\n``` \n\n\nVist our [Installation Guide](https://nixtla.github.io/statsforecast/docs/getting-started/installation.html) for further instructions.\n\n## Quick Start\n\n**Minimal Example**\n\n```python\nfrom statsforecast import StatsForecast\nfrom statsforecast.models import AutoARIMA\nfrom statsforecast.utils import AirPassengersDF\n\ndf = AirPassengersDF\nsf = StatsForecast(\n    models=[AutoARIMA(season_length=12)],\n    freq='ME',\n)\nsf.fit(df)\nsf.predict(h=12, level=[95])\n```\n\n**Get Started with this [quick guide](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_short.html).**\n\n**Follow this [end-to-end walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html) for best practices.**\n\n## Why? \n\nCurrent Python alternatives for statistical models are slow, inaccurate and don't scale well. So we created a library that can be used to forecast in production environments or as benchmarks.  `StatsForecast` includes an extensive battery of models that can efficiently fit millions of time series.\n\n## Features\n\n* Fastest and most accurate implementations of `AutoARIMA`, `AutoETS`, `AutoCES`, `MSTL` and `Theta` in Python. \n* Out-of-the-box compatibility with Spark, Dask, and Ray.\n* Probabilistic Forecasting and Confidence Intervals.\n* Support for exogenous Variables and static covariates.\n* Anomaly Detection.\n* Familiar sklearn syntax: `.fit` and `.predict`.\n\n## Highlights\n\n* Inclusion of `exogenous variables` and `prediction intervals` for ARIMA.\n* 20x [faster](./experiments/arima/) than `pmdarima`.\n* 1.5x faster than `R`.\n* 500x faster than `Prophet`. \n* 4x [faster](./experiments/ets/) than `statsmodels`.\n* Compiled to high performance machine code through [`numba`](https://numba.pydata.org/).\n* 1,000,000 series in [30 min](https://github.com/Nixtla/statsforecast/tree/main/experiments/ray) with [ray](https://github.com/ray-project/ray).\n* Replace FB-Prophet in two lines of code and gain speed and accuracy. Check the experiments [here](https://github.com/Nixtla/statsforecast/tree/main/experiments/arima_prophet_adapter).\n* Fit 10 benchmark models on **1,000,000** series in [under **5 min**](./experiments/benchmarks_at_scale/). \n\n\nMissing something? Please open an issue or write us in [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlaworkspace/shared_invite/zt-135dssye9-fWTzMpv2WBthq8NK0Yvu6A)\n\n## Examples and Guides\n\n\ud83d\udcda [End to End Walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html): Model training, evaluation and selection for multiple time series\n\n\ud83d\udd0e [Anomaly Detection](https://nixtla.github.io/statsforecast/docs/tutorials/anomalydetection.html): detect anomalies for time series using in-sample prediction intervals.\n\n\ud83d\udc69\u200d\ud83d\udd2c [Cross Validation](https://nixtla.github.io/statsforecast/docs/tutorials/crossvalidation.html): robust model\u2019s performance evaluation.\n\n\u2744\ufe0f [Multiple Seasonalities](https://nixtla.github.io/statsforecast/docs/tutorials/multipleseasonalities.html): how to forecast data with multiple seasonalities using an MSTL.\n\n\ud83d\udd0c [Predict Demand Peaks](https://nixtla.github.io/statsforecast/docs/tutorials/electricitypeakforecasting.html): electricity load forecasting for detecting daily peaks and reducing electric bills.\n\n\ud83d\udcc8 [Intermittent Demand](https://nixtla.github.io/statsforecast/docs/tutorials/intermittentdata.html): forecast series with very few non-zero observations. \n\n\ud83c\udf21\ufe0f [Exogenous Regressors](https://nixtla.github.io/statsforecast/docs/how-to-guides/exogenous.html): like weather or prices\n\n\n## Models\n\n### Automatic Forecasting\nAutomatic forecasting tools search for the best parameters and select the best possible model for a group of time series. These tools are useful for large collections of univariate time series.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[AutoARIMA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoarima)|\u2705|\u2705|\u2705|\u2705|\u2705|\n|[AutoETS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoets)|\u2705|\u2705|\u2705|\u2705||\n|[AutoCES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoces)|\u2705|\u2705|\u2705|\u2705||\n|[AutoTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autotheta)|\u2705|\u2705|\u2705|\u2705||\n|[AutoMFLES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#automfles)|\u2705|\u2705|\u2705|\u2705|\u2705|\n|[AutoTBATS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autotbats)|\u2705|\u2705|\u2705|\u2705||\n\n### ARIMA Family\nThese models exploit the existing autocorrelations in the time series.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[ARIMA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#arima)|\u2705|\u2705|\u2705|\u2705|\u2705|\n|[AutoRegressive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoregressive)|\u2705|\u2705|\u2705|\u2705|\u2705|\n\n### Theta Family\nFit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[Theta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#theta)|\u2705|\u2705|\u2705|\u2705||\n|[OptimizedTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#optimizedtheta)|\u2705|\u2705|\u2705|\u2705||\n|[DynamicTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#dynamictheta)|\u2705|\u2705|\u2705|\u2705||\n|[DynamicOptimizedTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#dynamicoptimizedtheta)|\u2705|\u2705|\u2705|\u2705||\n\n\n### Multiple Seasonalities\nSuited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[MSTL](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#mstl)|\u2705|\u2705|\u2705|\u2705|If trend forecaster supports|\n|[MFLES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#mfles)|\u2705|\u2705|\u2705|\u2705|\u2705|\n|[TBATS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#tbats)|\u2705|\u2705|\u2705|\u2705||\n\n### GARCH and ARCH Models \nSuited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH. \n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[GARCH](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#garch)|\u2705|\u2705|\u2705|\u2705||\n|[ARCH](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#arch)|\u2705|\u2705|\u2705|\u2705||\n\n### Baseline Models\nClassical models for establishing baseline.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[HistoricAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#historicaverage)|\u2705|\u2705|\u2705|\u2705||\n|[Naive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#naive)|\u2705|\u2705|\u2705|\u2705||\n|[RandomWalkWithDrift](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#randomwalkwithdrift)|\u2705|\u2705|\u2705|\u2705||\n|[SeasonalNaive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalnaive)|\u2705|\u2705|\u2705|\u2705||\n|[WindowAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#windowaverage)|\u2705|||||\n|[SeasonalWindowAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalwindowaverage)|\u2705|||||\n\n### Exponential Smoothing\nUses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the `SimpleExponential` family for data with no clear trend or seasonality.\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[SimpleExponentialSmoothing](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#simpleexponentialsmoothing)|\u2705||\u2705|||\n|[SimpleExponentialSmoothingOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#simpleexponentialsmoothingoptimized)|\u2705||\u2705|||\n|[SeasonalExponentialSmoothing](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalexponentialsmoothing)|\u2705||\u2705|||\n|[SeasonalExponentialSmoothingOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalexponentialsmoothingoptimized)|\u2705||\u2705|||\n|[Holt](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#holt)|\u2705|\u2705|\u2705|\u2705||\n|[HoltWinters](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#holtwinters)|\u2705|\u2705|\u2705|\u2705||\n\n### Sparse or Inttermitent\nSuited for series with very few non-zero observations\n\n|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|\n|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|\n|[ADIDA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#adida)|\u2705||\u2705|\u2705||\n|[CrostonClassic](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonclassic)|\u2705||\u2705|\u2705||\n|[CrostonOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonoptimized)|\u2705||\u2705|\u2705||\n|[CrostonSBA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonsba)|\u2705||\u2705|\u2705||\n|[IMAPA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#imapa)|\u2705||\u2705|\u2705||\n|[TSB](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#tsb)|\u2705||\u2705|\u2705||\n\n## \ud83d\udd28 How to contribute\nSee [CONTRIBUTING.md](https://github.com/Nixtla/statsforecast/blob/main/CONTRIBUTING.md).\n\n## Citing\n\n```bibtex\n@misc{garza2022statsforecast,\n    author={Azul Garza, Max Mergenthaler Canseco, Cristian Chall\u00fa, Kin G. Olivares},\n    title = {{StatsForecast}: Lightning fast forecasting with statistical and econometric models},\n    year={2022},\n    howpublished={{PyCon} Salt Lake City, Utah, US 2022},\n    url={https://github.com/Nixtla/statsforecast}\n}\n```\n\n## Contributors \u2728\n\nThanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):\n\n<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->\n<!-- prettier-ignore-start -->\n<!-- markdownlint-disable -->\n<table>\n  <tbody>\n    <tr>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/AzulGarza\"><img src=\"https://avatars.githubusercontent.com/u/10517170?v=4?s=100\" width=\"100px;\" alt=\"azul\"/><br /><sub><b>azul</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=AzulGarza\" title=\"Code\">\ud83d\udcbb</a> <a href=\"#maintenance-AzulGarza\" title=\"Maintenance\">\ud83d\udea7</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jmoralez\"><img src=\"https://avatars.githubusercontent.com/u/8473587?v=4?s=100\" width=\"100px;\" alt=\"Jos\u00e9 Morales\"/><br /><sub><b>Jos\u00e9 Morales</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=jmoralez\" title=\"Code\">\ud83d\udcbb</a> <a href=\"#maintenance-jmoralez\" title=\"Maintenance\">\ud83d\udea7</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/sugatoray/\"><img src=\"https://avatars.githubusercontent.com/u/10201242?v=4?s=100\" width=\"100px;\" alt=\"Sugato Ray\"/><br /><sub><b>Sugato Ray</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=sugatoray\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"http://www.jefftackes.com\"><img src=\"https://avatars.githubusercontent.com/u/9125316?v=4?s=100\" width=\"100px;\" alt=\"Jeff Tackes\"/><br /><sub><b>Jeff Tackes</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Atackes\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/darinkist\"><img src=\"https://avatars.githubusercontent.com/u/62692170?v=4?s=100\" width=\"100px;\" alt=\"darinkist\"/><br /><sub><b>darinkist</b></sub></a><br /><a href=\"#ideas-darinkist\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/alech97\"><img src=\"https://avatars.githubusercontent.com/u/22159405?v=4?s=100\" width=\"100px;\" alt=\"Alec Helyar\"/><br /><sub><b>Alec Helyar</b></sub></a><br /><a href=\"#question-alech97\" title=\"Answering Questions\">\ud83d\udcac</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://dhirschfeld.github.io\"><img src=\"https://avatars.githubusercontent.com/u/881019?v=4?s=100\" width=\"100px;\" alt=\"Dave Hirschfeld\"/><br /><sub><b>Dave Hirschfeld</b></sub></a><br /><a href=\"#question-dhirschfeld\" title=\"Answering Questions\">\ud83d\udcac</a></td>\n    </tr>\n    <tr>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/mergenthaler\"><img src=\"https://avatars.githubusercontent.com/u/4086186?v=4?s=100\" width=\"100px;\" alt=\"mergenthaler\"/><br /><sub><b>mergenthaler</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=mergenthaler\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/kdgutier\"><img src=\"https://avatars.githubusercontent.com/u/19935241?v=4?s=100\" width=\"100px;\" alt=\"Kin\"/><br /><sub><b>Kin</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=kdgutier\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/Yasslight90\"><img src=\"https://avatars.githubusercontent.com/u/58293883?v=4?s=100\" width=\"100px;\" alt=\"Yasslight90\"/><br /><sub><b>Yasslight90</b></sub></a><br /><a href=\"#ideas-Yasslight90\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/asinig\"><img src=\"https://avatars.githubusercontent.com/u/99350687?v=4?s=100\" width=\"100px;\" alt=\"asinig\"/><br /><sub><b>asinig</b></sub></a><br /><a href=\"#ideas-asinig\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/guerda\"><img src=\"https://avatars.githubusercontent.com/u/230782?v=4?s=100\" width=\"100px;\" alt=\"Philip Gilli\u00dfen\"/><br /><sub><b>Philip Gilli\u00dfen</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=guerda\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/shagn\"><img src=\"https://avatars.githubusercontent.com/u/16029092?v=4?s=100\" width=\"100px;\" alt=\"Sebastian Hagn\"/><br /><sub><b>Sebastian Hagn</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Ashagn\" title=\"Bug reports\">\ud83d\udc1b</a> <a href=\"https://github.com/Nixtla/statsforecast/commits?author=shagn\" title=\"Documentation\">\ud83d\udcd6</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/fugue-project/fugue\"><img src=\"https://avatars.githubusercontent.com/u/21092479?v=4?s=100\" width=\"100px;\" alt=\"Han Wang\"/><br /><sub><b>Han Wang</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=goodwanghan\" title=\"Code\">\ud83d\udcbb</a></td>\n    </tr>\n    <tr>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/benjamin-jeffrey-218548a8/\"><img src=\"https://avatars.githubusercontent.com/u/36240394?v=4?s=100\" width=\"100px;\" alt=\"Ben Jeffrey\"/><br /><sub><b>Ben Jeffrey</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Abjeffrey92\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/Beliavsky\"><img src=\"https://avatars.githubusercontent.com/u/38887928?v=4?s=100\" width=\"100px;\" alt=\"Beliavsky\"/><br /><sub><b>Beliavsky</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=Beliavsky\" title=\"Documentation\">\ud83d\udcd6</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/MMenchero\"><img src=\"https://avatars.githubusercontent.com/u/47995617?v=4?s=100\" width=\"100px;\" alt=\"Mariana Menchero Garc\u00eda \"/><br /><sub><b>Mariana Menchero Garc\u00eda </b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=MMenchero\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/guptanick/\"><img src=\"https://avatars.githubusercontent.com/u/33585645?v=4?s=100\" width=\"100px;\" alt=\"Nikhil Gupta\"/><br /><sub><b>Nikhil Gupta</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Angupta23\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jdegene\"><img src=\"https://avatars.githubusercontent.com/u/17744939?v=4?s=100\" width=\"100px;\" alt=\"JD\"/><br /><sub><b>JD</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/issues?q=author%3Ajdegene\" title=\"Bug reports\">\ud83d\udc1b</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jattenberg\"><img src=\"https://avatars.githubusercontent.com/u/924185?v=4?s=100\" width=\"100px;\" alt=\"josh attenberg\"/><br /><sub><b>josh attenberg</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=jattenberg\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/JeroenPeterBos\"><img src=\"https://avatars.githubusercontent.com/u/15342738?v=4?s=100\" width=\"100px;\" alt=\"JeroenPeterBos\"/><br /><sub><b>JeroenPeterBos</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=JeroenPeterBos\" title=\"Code\">\ud83d\udcbb</a></td>\n    </tr>\n    <tr>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/jvdd\"><img src=\"https://avatars.githubusercontent.com/u/18898740?v=4?s=100\" width=\"100px;\" alt=\"Jeroen Van Der Donckt\"/><br /><sub><b>Jeroen Van Der Donckt</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=jvdd\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/Roymprog\"><img src=\"https://avatars.githubusercontent.com/u/4035367?v=4?s=100\" width=\"100px;\" alt=\"Roymprog\"/><br /><sub><b>Roymprog</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=Roymprog\" title=\"Documentation\">\ud83d\udcd6</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/nelsoncardenas\"><img src=\"https://avatars.githubusercontent.com/u/18086414?v=4?s=100\" width=\"100px;\" alt=\"Nelson C\u00e1rdenas Bola\u00f1o\"/><br /><sub><b>Nelson C\u00e1rdenas Bola\u00f1o</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=nelsoncardenas\" title=\"Documentation\">\ud83d\udcd6</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/kschmaus\"><img src=\"https://avatars.githubusercontent.com/u/6586847?v=4?s=100\" width=\"100px;\" alt=\"Kyle Schmaus\"/><br /><sub><b>Kyle Schmaus</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=kschmaus\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/akmal-soliev/\"><img src=\"https://avatars.githubusercontent.com/u/24494206?v=4?s=100\" width=\"100px;\" alt=\"Akmal Soliev\"/><br /><sub><b>Akmal Soliev</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=akmalsoliev\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/nickto\"><img src=\"https://avatars.githubusercontent.com/u/11967792?v=4?s=100\" width=\"100px;\" alt=\"Nick To\"/><br /><sub><b>Nick To</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=nickto\" title=\"Code\">\ud83d\udcbb</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://www.linkedin.com/in/kvnkho/\"><img src=\"https://avatars.githubusercontent.com/u/32503212?v=4?s=100\" width=\"100px;\" alt=\"Kevin Kho\"/><br /><sub><b>Kevin Kho</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=kvnkho\" title=\"Code\">\ud83d\udcbb</a></td>\n    </tr>\n    <tr>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/yibenhuang\"><img src=\"https://avatars.githubusercontent.com/u/62163340?v=4?s=100\" width=\"100px;\" alt=\"Yiben Huang\"/><br /><sub><b>Yiben Huang</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=yibenhuang\" title=\"Documentation\">\ud83d\udcd6</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/andrewgross\"><img src=\"https://avatars.githubusercontent.com/u/370118?v=4?s=100\" width=\"100px;\" alt=\"Andrew Gross\"/><br /><sub><b>Andrew Gross</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=andrewgross\" title=\"Documentation\">\ud83d\udcd6</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/taniishkaaa\"><img src=\"https://avatars.githubusercontent.com/u/109246904?v=4?s=100\" width=\"100px;\" alt=\"taniishkaaa\"/><br /><sub><b>taniishkaaa</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=taniishkaaa\" title=\"Documentation\">\ud83d\udcd6</a></td>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://manuel.calzolari.name\"><img src=\"https://avatars.githubusercontent.com/u/2764902?v=4?s=100\" width=\"100px;\" alt=\"Manuel Calzolari\"/><br /><sub><b>Manuel Calzolari</b></sub></a><br /><a href=\"https://github.com/Nixtla/statsforecast/commits?author=manuel-calzolari\" title=\"Code\">\ud83d\udcbb</a></td>\n    </tr>\n  </tbody>\n</table>\n\n<!-- markdownlint-restore -->\n<!-- prettier-ignore-end -->\n\n<!-- ALL-CONTRIBUTORS-LIST:END -->\n\nThis project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "Time series forecasting suite using statistical models",
    "version": "2.0.1",
    "project_urls": {
        "Homepage": "https://github.com/Nixtla/statsforecast/"
    },
    "split_keywords": [
        "time-series",
        "forecasting",
        "arima",
        "ets"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b44b423151a6382642c2989a3f91efba035ce2fd09de8fcfd0f03f32c2f00667",
                "md5": "d2a853701f06060aa8b65eb7fc9f530d",
                "sha256": "f6839c3c033d7de25ab71d95e7e813830ea4026d2eeb88e28421022eed48a702"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d2a853701f06060aa8b65eb7fc9f530d",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 311831,
            "upload_time": "2025-02-18T19:42:02",
            "upload_time_iso_8601": "2025-02-18T19:42:02.554780Z",
            "url": "https://files.pythonhosted.org/packages/b4/4b/423151a6382642c2989a3f91efba035ce2fd09de8fcfd0f03f32c2f00667/statsforecast-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "00e3d8f3c7c9360e718d066d3fb3608508cd71301b79a069f9582e85e2c91b24",
                "md5": "5bde3d7f8cd0fe98d97c8a6880758d04",
                "sha256": "d4991c88c901b2d14a383616e59d64e950e7ab277d3f9748b55145f06c409cf5"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp310-cp310-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "5bde3d7f8cd0fe98d97c8a6880758d04",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 297856,
            "upload_time": "2025-02-18T19:42:05",
            "upload_time_iso_8601": "2025-02-18T19:42:05.628782Z",
            "url": "https://files.pythonhosted.org/packages/00/e3/d8f3c7c9360e718d066d3fb3608508cd71301b79a069f9582e85e2c91b24/statsforecast-2.0.1-cp310-cp310-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8cd454f084abb98a951e321b2f86195914ff9466e772fed1f5907f2430527011",
                "md5": "fdbef1c6591d64e93a07566bbfd03912",
                "sha256": "966f17711077c70586f40f7f3fecc03400fb27b7413f9d1ac89a72c7d196a408"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "fdbef1c6591d64e93a07566bbfd03912",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 339761,
            "upload_time": "2025-02-18T19:42:07",
            "upload_time_iso_8601": "2025-02-18T19:42:07.950539Z",
            "url": "https://files.pythonhosted.org/packages/8c/d4/54f084abb98a951e321b2f86195914ff9466e772fed1f5907f2430527011/statsforecast-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "97d108457d9e6ada8dd201e602a8ff54604f086b5f5b8aadc01a636366a95b2c",
                "md5": "6041b819855e3fd46ce9e5a2d06784ab",
                "sha256": "44bf8934d9ccb3605649a60ab639d3e3159878d334a68fe538523e53270bb52a"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6041b819855e3fd46ce9e5a2d06784ab",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 353615,
            "upload_time": "2025-02-18T19:42:09",
            "upload_time_iso_8601": "2025-02-18T19:42:09.477003Z",
            "url": "https://files.pythonhosted.org/packages/97/d1/08457d9e6ada8dd201e602a8ff54604f086b5f5b8aadc01a636366a95b2c/statsforecast-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ce94232b8473396e516d25285d0ae61e8ad30c3ade6b065afaf1c30ad991bd1d",
                "md5": "fdd91ef7139c7829dc723a6f6911a293",
                "sha256": "0958f1627a4fd58e34c6fdc913bccf9b2dbbcddc9405dfe243a0051e108a7371"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "fdd91ef7139c7829dc723a6f6911a293",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 275729,
            "upload_time": "2025-02-18T19:42:11",
            "upload_time_iso_8601": "2025-02-18T19:42:11.697015Z",
            "url": "https://files.pythonhosted.org/packages/ce/94/232b8473396e516d25285d0ae61e8ad30c3ade6b065afaf1c30ad991bd1d/statsforecast-2.0.1-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b0ae62457c888696a723f7cc9de1d02b7ced1d8179d722d6261f7547de0bdbf9",
                "md5": "9d7dc662cfe6ba61f39f578b930046f8",
                "sha256": "f26cb574db38f3ad5f2bc0a97126aa5b0b6b831e871bfb83dec352233737dd6a"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl",
            "has_sig": false,
            "md5_digest": "9d7dc662cfe6ba61f39f578b930046f8",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 313006,
            "upload_time": "2025-02-18T19:42:13",
            "upload_time_iso_8601": "2025-02-18T19:42:13.806761Z",
            "url": "https://files.pythonhosted.org/packages/b0/ae/62457c888696a723f7cc9de1d02b7ced1d8179d722d6261f7547de0bdbf9/statsforecast-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "39b6a49b13415f0b54f65f384a9d45354912592f11724331e40068fd8b19d3c8",
                "md5": "df2f310aab1480d74bf739c94425772b",
                "sha256": "ec84068d8df8949ed499e73d0967daca023bcb5b385ad741a038f21f49b81f68"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp311-cp311-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "df2f310aab1480d74bf739c94425772b",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 299168,
            "upload_time": "2025-02-18T19:42:15",
            "upload_time_iso_8601": "2025-02-18T19:42:15.290069Z",
            "url": "https://files.pythonhosted.org/packages/39/b6/a49b13415f0b54f65f384a9d45354912592f11724331e40068fd8b19d3c8/statsforecast-2.0.1-cp311-cp311-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "13ce60169b3b576f984cf1b51ec5ed623bd209d19ca79be85a1e67021ca7983e",
                "md5": "e04a49fa0ec7ff12fec3ab40fbdcefce",
                "sha256": "826f3549d1f2c0ef76c7976619381f5a1f1dc504b2fbfbccf9f88e89362cb125"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "e04a49fa0ec7ff12fec3ab40fbdcefce",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 340780,
            "upload_time": "2025-02-18T19:42:18",
            "upload_time_iso_8601": "2025-02-18T19:42:18.254840Z",
            "url": "https://files.pythonhosted.org/packages/13/ce/60169b3b576f984cf1b51ec5ed623bd209d19ca79be85a1e67021ca7983e/statsforecast-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "40af4ea162487e03f722d6d277ff409a645e9528293d8e5ca543b3a12fa2034c",
                "md5": "09e15d630acb2e14ef670391522c428a",
                "sha256": "8855e5a950ff45c53da13c5febbfb47d6b946f8ca34d70b052e2ce7942263731"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "09e15d630acb2e14ef670391522c428a",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 354411,
            "upload_time": "2025-02-18T19:42:20",
            "upload_time_iso_8601": "2025-02-18T19:42:20.435660Z",
            "url": "https://files.pythonhosted.org/packages/40/af/4ea162487e03f722d6d277ff409a645e9528293d8e5ca543b3a12fa2034c/statsforecast-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "597993136f585dc9953ea3895d5954df69ba6a722beae4cf02ce00a1b6281d9c",
                "md5": "c4b2bf59985680965e3e9fff35db7d58",
                "sha256": "d6198030eeb48c02ebe43075830a638155e96ef748b106f9bd8703fe6951e11d"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "c4b2bf59985680965e3e9fff35db7d58",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 276466,
            "upload_time": "2025-02-18T19:42:21",
            "upload_time_iso_8601": "2025-02-18T19:42:21.792722Z",
            "url": "https://files.pythonhosted.org/packages/59/79/93136f585dc9953ea3895d5954df69ba6a722beae4cf02ce00a1b6281d9c/statsforecast-2.0.1-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5e984b99d0638fa3bd1ebb7c5aec452bc8cc25e83588d6b850f5557a850376cd",
                "md5": "bd03eeb106ebc0b529e6049a8db93487",
                "sha256": "7d3c5a41116e42a657510db905185b9faff152bf099a059f5aac4acaca4e5d39"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp312-cp312-macosx_10_13_x86_64.whl",
            "has_sig": false,
            "md5_digest": "bd03eeb106ebc0b529e6049a8db93487",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 313855,
            "upload_time": "2025-02-18T19:42:23",
            "upload_time_iso_8601": "2025-02-18T19:42:23.942336Z",
            "url": "https://files.pythonhosted.org/packages/5e/98/4b99d0638fa3bd1ebb7c5aec452bc8cc25e83588d6b850f5557a850376cd/statsforecast-2.0.1-cp312-cp312-macosx_10_13_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b55f5b3c02b27c37cc0085285a431c2c5c4893bb4c209516b7921360a28cfa70",
                "md5": "105fd1e91006591347037893d633fcc4",
                "sha256": "82ebc9cc5cb9fcad2a92adf7f248e509f5ac9b1402be0e35b50ffa1bcd4b74e2"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp312-cp312-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "105fd1e91006591347037893d633fcc4",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 298730,
            "upload_time": "2025-02-18T19:42:26",
            "upload_time_iso_8601": "2025-02-18T19:42:26.272038Z",
            "url": "https://files.pythonhosted.org/packages/b5/5f/5b3c02b27c37cc0085285a431c2c5c4893bb4c209516b7921360a28cfa70/statsforecast-2.0.1-cp312-cp312-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a4defe2fd9301101a2a96578295ae0b713d58c04161a7a68f0daf8aab40d1df9",
                "md5": "cd138c2ee785a35d3e4e983ea6e0f792",
                "sha256": "3b8d6dc9f832658e4e17ee2a2d4d9553ce3c8b22766536fe28de9928ed8c0c64"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "cd138c2ee785a35d3e4e983ea6e0f792",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 338046,
            "upload_time": "2025-02-18T19:42:28",
            "upload_time_iso_8601": "2025-02-18T19:42:28.885968Z",
            "url": "https://files.pythonhosted.org/packages/a4/de/fe2fd9301101a2a96578295ae0b713d58c04161a7a68f0daf8aab40d1df9/statsforecast-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c5c2a0819c3f4f618854a266e01c2316d247466a1d577809bc590657beb65bd3",
                "md5": "acd809e67aeb8b37a2fa14ef88f2046b",
                "sha256": "0a191eab019140946f267a872fdeae8f61a3b27cfd69e7150e93c880ef90f75f"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "acd809e67aeb8b37a2fa14ef88f2046b",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 353304,
            "upload_time": "2025-02-18T19:42:31",
            "upload_time_iso_8601": "2025-02-18T19:42:31.054022Z",
            "url": "https://files.pythonhosted.org/packages/c5/c2/a0819c3f4f618854a266e01c2316d247466a1d577809bc590657beb65bd3/statsforecast-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "db8c7d8575a1cc09e739a4f66b349a4ef80f7a53e4eb18ae8b290315a6bb7eb6",
                "md5": "3a89b23cf25359ef58fe1e16f2373ee7",
                "sha256": "61e0526cba8f5999268a6a6a43740d1e0f9923bb1ff7f54cfac90119bff08883"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp312-cp312-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "3a89b23cf25359ef58fe1e16f2373ee7",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 277229,
            "upload_time": "2025-02-18T19:42:32",
            "upload_time_iso_8601": "2025-02-18T19:42:32.465147Z",
            "url": "https://files.pythonhosted.org/packages/db/8c/7d8575a1cc09e739a4f66b349a4ef80f7a53e4eb18ae8b290315a6bb7eb6/statsforecast-2.0.1-cp312-cp312-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5e0f18c87ec25ddf29430a487cdddca0b35b876fb5ad17d1ea9920cf422f4d57",
                "md5": "7eb3fe79671b639b1f928aff396ea542",
                "sha256": "f76c8b2594dc0752aebeb5a45dbdf43229e9c4efabef85daedfe0a7ec5b72f49"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7eb3fe79671b639b1f928aff396ea542",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 311899,
            "upload_time": "2025-02-18T19:42:33",
            "upload_time_iso_8601": "2025-02-18T19:42:33.952217Z",
            "url": "https://files.pythonhosted.org/packages/5e/0f/18c87ec25ddf29430a487cdddca0b35b876fb5ad17d1ea9920cf422f4d57/statsforecast-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "92d234b766fdc3ae8bf9598ef2a796962f1520c90202d09394e802bdbefd6f57",
                "md5": "22e3c8ff75209a7469d1e7a17d79f936",
                "sha256": "d7d55864b845df6ab89f27bc255e72b5000f064003a8fe0279447314286fde43"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp39-cp39-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "22e3c8ff75209a7469d1e7a17d79f936",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 298008,
            "upload_time": "2025-02-18T19:42:36",
            "upload_time_iso_8601": "2025-02-18T19:42:36.243357Z",
            "url": "https://files.pythonhosted.org/packages/92/d2/34b766fdc3ae8bf9598ef2a796962f1520c90202d09394e802bdbefd6f57/statsforecast-2.0.1-cp39-cp39-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a9ba679e4b86eb390c04b90cb3d56c4129d1d3e5c23be96bf7c589b2506bdad8",
                "md5": "1285a35a3216aded136c91c70a3a061b",
                "sha256": "a67b4e17080b836d6a4cf15c33dbff3dca96b5338caba81145d6248eb8fe9cba"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "1285a35a3216aded136c91c70a3a061b",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 340287,
            "upload_time": "2025-02-18T19:42:38",
            "upload_time_iso_8601": "2025-02-18T19:42:38.457738Z",
            "url": "https://files.pythonhosted.org/packages/a9/ba/679e4b86eb390c04b90cb3d56c4129d1d3e5c23be96bf7c589b2506bdad8/statsforecast-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "25b3bc541fcbd7505d7c7afeffc01d5c8c4d556ec6efac0627ca08f8cc4fb881",
                "md5": "bed9c763e7e4fcb7a53c3a99b44ea46a",
                "sha256": "537a488a2f1d3b955882c951345051dcea60a266ab8bdec43d7c0e2dc510e778"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "bed9c763e7e4fcb7a53c3a99b44ea46a",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 354299,
            "upload_time": "2025-02-18T19:42:39",
            "upload_time_iso_8601": "2025-02-18T19:42:39.769535Z",
            "url": "https://files.pythonhosted.org/packages/25/b3/bc541fcbd7505d7c7afeffc01d5c8c4d556ec6efac0627ca08f8cc4fb881/statsforecast-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "586624f1b579eee58d5d5746c692960f05b4b5f9616ad508d74ca08c7b05b6ad",
                "md5": "0c74f4403bef0f2a2b5581b2e79acc78",
                "sha256": "f6de4e62f6693a7f2e817e322b608ba0ff5f0e83aa18c9477dca5ae5a5e22eef"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1-cp39-cp39-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "0c74f4403bef0f2a2b5581b2e79acc78",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 272729,
            "upload_time": "2025-02-18T19:42:41",
            "upload_time_iso_8601": "2025-02-18T19:42:41.206629Z",
            "url": "https://files.pythonhosted.org/packages/58/66/24f1b579eee58d5d5746c692960f05b4b5f9616ad508d74ca08c7b05b6ad/statsforecast-2.0.1-cp39-cp39-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b95b7fbf787cc947ff358d3a4ec81911f0386aca66d643fdd5128f599a901479",
                "md5": "5b8a1714d3939570cd9899f0f402901a",
                "sha256": "dd856ad584f4d561b233da0db2b8e52b3a5cfa27109b0e0cb780293a836ad0b0"
            },
            "downloads": -1,
            "filename": "statsforecast-2.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "5b8a1714d3939570cd9899f0f402901a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 2880305,
            "upload_time": "2025-02-18T19:42:44",
            "upload_time_iso_8601": "2025-02-18T19:42:44.116960Z",
            "url": "https://files.pythonhosted.org/packages/b9/5b/7fbf787cc947ff358d3a4ec81911f0386aca66d643fdd5128f599a901479/statsforecast-2.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-18 19:42:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Nixtla",
    "github_project": "statsforecast",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "statsforecast"
}
        
Elapsed time: 0.58650s