Name | stellar-stats JSON |
Version |
0.8.2
JSON |
| download |
home_page | None |
Summary | Stats page for backtest/live trading |
upload_time | 2025-09-19 05:08:49 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MIT |
keywords |
trade
stats
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Stellar Stats
A Streamlit-based trading statistics dashboard that analyzes backtest and live trading performance with comprehensive metrics and visualizations.
## Features
- **Multi-account performance analysis** - Compare performance across different trading accounts
- **Benchmark comparison** - Compare against market indices with leverage options
- **Flexible time periods** - YTD, inception-to-date, or custom date ranges
- **Comprehensive metrics** - Performance metrics, drawdown analysis, return distributions
- **Trade analysis** - Detailed breakdowns by underlying assets and slippage tracking
- **Round-trip analysis** - Extract and analyze complete trading round-trips
- **Investor tracking** - Calculate investor-specific returns
## Installation
```bash
pip install stellar-stats
```
## Usage
### Run the Dashboard
```bash
stellar-stats run
```
This launches the Streamlit web interface for interactive analysis.
## Configuration
Create an optional `config.toml` file to define:
- Account configurations and data directories
- Custom benchmark symbols
- API tokens (Tushare for Chinese market data)
The system will auto-discover account directories if no configuration is provided, which is useful for viewing backtesting results.
## Data Sources
- **Local files**: CSV/HDF/Parquet files containing returns, trades, round trips, and slippage data
- **Market data**: yfinance for global benchmark symbols
- **Chinese markets**: Tushare API (requires token configuration)
- **Investor data**: Optional investors.csv for investor-specific analysis
## License
MIT
Raw data
{
"_id": null,
"home_page": null,
"name": "stellar-stats",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "trade stats",
"author": null,
"author_email": "Keli Hu <dev@keli.hu>",
"download_url": "https://files.pythonhosted.org/packages/f0/3b/de2bb0240ecf398290797c815878f92ba59d0ee299e41b3f9fe9d2c46b55/stellar_stats-0.8.2.tar.gz",
"platform": null,
"description": "# Stellar Stats\n\nA Streamlit-based trading statistics dashboard that analyzes backtest and live trading performance with comprehensive metrics and visualizations.\n\n## Features\n\n- **Multi-account performance analysis** - Compare performance across different trading accounts\n- **Benchmark comparison** - Compare against market indices with leverage options\n- **Flexible time periods** - YTD, inception-to-date, or custom date ranges\n- **Comprehensive metrics** - Performance metrics, drawdown analysis, return distributions\n- **Trade analysis** - Detailed breakdowns by underlying assets and slippage tracking\n- **Round-trip analysis** - Extract and analyze complete trading round-trips\n- **Investor tracking** - Calculate investor-specific returns\n\n## Installation\n\n```bash\npip install stellar-stats\n```\n\n\n## Usage\n\n### Run the Dashboard\n\n```bash\nstellar-stats run\n```\n\nThis launches the Streamlit web interface for interactive analysis.\n\n\n## Configuration\n\nCreate an optional `config.toml` file to define:\n\n- Account configurations and data directories\n- Custom benchmark symbols\n- API tokens (Tushare for Chinese market data)\n\nThe system will auto-discover account directories if no configuration is provided, which is useful for viewing backtesting results.\n\n## Data Sources\n\n- **Local files**: CSV/HDF/Parquet files containing returns, trades, round trips, and slippage data\n- **Market data**: yfinance for global benchmark symbols\n- **Chinese markets**: Tushare API (requires token configuration)\n- **Investor data**: Optional investors.csv for investor-specific analysis\n\n\n## License\n\nMIT\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Stats page for backtest/live trading",
"version": "0.8.2",
"project_urls": {
"Homepage": "https://github.com/keli/stellar-stats"
},
"split_keywords": [
"trade",
"stats"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "e1f2b95b71ad5ff646292f4e6210ea366a87e5d30bae89b6c65a6d362e1dcc30",
"md5": "c7ebd8257214734107a583dc46e29a06",
"sha256": "1859aa1d4dc9d90168fc982a6b864593d4e74e44e9321be78230178a38bd328e"
},
"downloads": -1,
"filename": "stellar_stats-0.8.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c7ebd8257214734107a583dc46e29a06",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 40238,
"upload_time": "2025-09-19T05:08:47",
"upload_time_iso_8601": "2025-09-19T05:08:47.987221Z",
"url": "https://files.pythonhosted.org/packages/e1/f2/b95b71ad5ff646292f4e6210ea366a87e5d30bae89b6c65a6d362e1dcc30/stellar_stats-0.8.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f03bde2bb0240ecf398290797c815878f92ba59d0ee299e41b3f9fe9d2c46b55",
"md5": "466267e123e3ea3a29d4145feb589ad8",
"sha256": "c682345f3418373b16ea4667102ad47c1ffea6864d200b493d8b6e9efd183df1"
},
"downloads": -1,
"filename": "stellar_stats-0.8.2.tar.gz",
"has_sig": false,
"md5_digest": "466267e123e3ea3a29d4145feb589ad8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 40136,
"upload_time": "2025-09-19T05:08:49",
"upload_time_iso_8601": "2025-09-19T05:08:49.365946Z",
"url": "https://files.pythonhosted.org/packages/f0/3b/de2bb0240ecf398290797c815878f92ba59d0ee299e41b3f9fe9d2c46b55/stellar_stats-0.8.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-19 05:08:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "keli",
"github_project": "stellar-stats",
"github_not_found": true,
"lcname": "stellar-stats"
}