# stochasticclock
![](https://raw.githubusercontent.com/Mitrxs/Stochastic-clock/main/example_figures/Example_illustration.png)
A module calculating the stochastic deviations in timepoints for atomic clocks.
This module is an application of the theory presented in Galleani et al. (2003), doi:10.1088/0026-1394/40/3/305.
The module's current functionality calculates stochastic deviations using the exact iterative solution to the stochastic differential equation in `Galleani_exact()`
$$\begin{equation*}
\mathbf{X}(t_{n+1}) =
\begin{pmatrix}
1 & \delta t \\\
0 & 1
\end{pmatrix}
\mathbf{X}(t_n) +
\begin{pmatrix}
\delta t \mu_1 + \frac{1}{2} \delta t^2 \mu_2 \\\
\delta t \mu_2
\end{pmatrix}
+ \mathbf{\Sigma}(t_n)
\end{equation*}$$
$$\begin{equation*}
\mathbf{\Sigma}(t_n) \sim \mathcal{N} \bigg( \mathbf{0},
\begin{bmatrix}
\sigma_1^2 \delta t + \frac{1}{3} \sigma_2^2 \delta t^3 & \frac{1}{2}\sigma_2^2 \delta t^2 \\\
\frac{1}{2}\sigma_2^2 \delta t^2 & \sigma_2^2 \delta t
\end{bmatrix}
\bigg)
\end{equation*}$$
Stochastic deviations can be visualised using `clock_error()`, and their distributions simulated with `deviation_distribution()`.
Please consult the Jupyter notebook for a walkthrough of the package.
Raw data
{
"_id": null,
"home_page": "",
"name": "stochasticclock",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Ali Sherzad <ali.sherzad@spc.ox.ac.uk>",
"keywords": "Caesium,Metrology,SDE,atomic,clock,stochastic,timer",
"author": "",
"author_email": "Ali Sherzad <ali.sherzad@spc.ox.ac.uk>, Pranav Singh <ps2106@bath.ac.uk>",
"download_url": "https://files.pythonhosted.org/packages/ce/67/93c03499fdfc06a4f4f6153a9bad875e5126ad23f7243161c7323a7bea95/stochasticclock-0.0.3.tar.gz",
"platform": null,
"description": "# stochasticclock\n\n![](https://raw.githubusercontent.com/Mitrxs/Stochastic-clock/main/example_figures/Example_illustration.png)\n\nA module calculating the stochastic deviations in timepoints for atomic clocks. \n\nThis module is an application of the theory presented in Galleani et al. (2003), doi:10.1088/0026-1394/40/3/305.\n\nThe module's current functionality calculates stochastic deviations using the exact iterative solution to the stochastic differential equation in `Galleani_exact()`\n\n$$\\begin{equation*}\n \\mathbf{X}(t_{n+1}) =\n \\begin{pmatrix}\n 1 & \\delta t \\\\\\ \n 0 & 1 \n \\end{pmatrix}\n \\mathbf{X}(t_n) +\n \\begin{pmatrix}\n \\delta t \\mu_1 + \\frac{1}{2} \\delta t^2 \\mu_2 \\\\\\ \n \\delta t \\mu_2\n \\end{pmatrix} \n + \\mathbf{\\Sigma}(t_n)\n\\end{equation*}$$ \n\n$$\\begin{equation*}\n \\mathbf{\\Sigma}(t_n) \\sim \\mathcal{N} \\bigg( \\mathbf{0},\n \\begin{bmatrix}\n \\sigma_1^2 \\delta t + \\frac{1}{3} \\sigma_2^2 \\delta t^3 & \\frac{1}{2}\\sigma_2^2 \\delta t^2 \\\\\\ \n \\frac{1}{2}\\sigma_2^2 \\delta t^2 & \\sigma_2^2 \\delta t \n \\end{bmatrix} \n \\bigg)\n\\end{equation*}$$ \n\nStochastic deviations can be visualised using `clock_error()`, and their distributions simulated with `deviation_distribution()`.\n\nPlease consult the Jupyter notebook for a walkthrough of the package.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Atomic clock simulation",
"version": "0.0.3",
"project_urls": {
"Bug Tracker": "https://github.com/Mitrxs/Stochastic-clock/issues",
"Changelog": "https://github.com/Mitrxs/Stochastic-clock/blob/main/CHANGELOG.md",
"Homepage": "https://github.com/Mitrxs/Stochastic-clock"
},
"split_keywords": [
"caesium",
"metrology",
"sde",
"atomic",
"clock",
"stochastic",
"timer"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "01cda011f2f766e234eea6bdd4cdc43bca23a92298d12deb888bd7390ebf3483",
"md5": "dba22866531f384cf5ef6cf3afbba12d",
"sha256": "2a8f3c2aa46297d86af24d6dd7f532606ad1d21b17d45e03723be5014474d7c9"
},
"downloads": -1,
"filename": "stochasticclock-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dba22866531f384cf5ef6cf3afbba12d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 5358,
"upload_time": "2024-03-07T15:33:31",
"upload_time_iso_8601": "2024-03-07T15:33:31.537089Z",
"url": "https://files.pythonhosted.org/packages/01/cd/a011f2f766e234eea6bdd4cdc43bca23a92298d12deb888bd7390ebf3483/stochasticclock-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ce6793c03499fdfc06a4f4f6153a9bad875e5126ad23f7243161c7323a7bea95",
"md5": "8a9015e4b1d38ea7aa0d3789e1ec90b1",
"sha256": "9ff36a3cf6c00136df4852957af727cf5fd57d35711ab35b64ff8666d21358a8"
},
"downloads": -1,
"filename": "stochasticclock-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "8a9015e4b1d38ea7aa0d3789e1ec90b1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 701708,
"upload_time": "2024-03-07T15:33:33",
"upload_time_iso_8601": "2024-03-07T15:33:33.117864Z",
"url": "https://files.pythonhosted.org/packages/ce/67/93c03499fdfc06a4f4f6153a9bad875e5126ad23f7243161c7323a7bea95/stochasticclock-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-07 15:33:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Mitrxs",
"github_project": "Stochastic-clock",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "stochasticclock"
}