stock-indicators


Namestock-indicators JSON
Version 1.3.3 PyPI version JSON
download
home_pageNone
SummaryStock Indicators for Python. Send in historical price quotes and get back desired technical indicators such as Stochastic RSI, Average True Range, Parabolic SAR, etc. Nothing more.
upload_time2025-01-30 01:06:53
maintainerDong-Geon Lee
docs_urlNone
authorDave Skender
requires_python>=3.8
licenseApache 2.0
keywords stock indicators technical indicators market technical analysis algorithmic trading trade momentum finance algorithm algo algotrading financial strategy chart charting oscillator overlay equity bitcoin crypto cryptocurrency forex quantitative historical quotes accumulation distribution adl aroon true range atr bollinger bands commodity cci chandelier exit chaikin money flow cmf mfi kaufman adaptive moving average convergence divergence macd sma ema dema tema trix smoothed elder-ray bull bear power force hurst exponent relative strength index rsi connors rsi stochastic directional movement adx donchian keltner channel heikin-ashi hilbert transform instantaneous trendline hull hma ichimoku cloud on-balance volume obv price pmo prs parabolic sar psar pivot points rate of change roc linear regression r-squared renko schaff cycle slope standard deviation beta convexity correlation supertrend ulcer ultimate vortex williams %r alligator gator fractal chaos choppiness endpoint wma zigzag
VCS
bugtrack_url
requirements pythonnet typing_extensions
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![image](https://raw.githubusercontent.com/facioquo/stock-indicators-python/main/docs/assets/social-banner.png)](https://python.stockindicators.dev/)

[![PyPI](https://img.shields.io/pypi/v/stock-indicators?color=blue&label=PyPI)](https://badge.fury.io/py/stock-indicators)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/stock-indicators?style=flat&logo=Python&logoColor=white&label=Downloads&color=indigo)](https://pypistats.org/packages/stock-indicators)

# Stock Indicators for Python

**Stock Indicators for Python** is a PyPI library package that produces financial market technical indicators.  Send in historical price quotes and get back desired indicators such as moving averages, Relative Strength Index, Stochastic Oscillator, Parabolic SAR, etc.  Nothing more.

It can be used in any market analysis software using standard OHLCV price quotes for equities, commodities, forex, cryptocurrencies, and others.  We had trading algorithms, machine learning, and charting systems in mind when originally creating this community library.  [Stock Indicators for .NET](https://dotnet.stockindicators.dev/) is also available.

Visit our project site for more information:

- [Overview](https://python.stockindicators.dev/)
- [Indicators and overlays](https://python.stockindicators.dev/indicators/)
- [Guide and Pro tips](https://python.stockindicators.dev/guide/)
- [Release notes](https://github.com/facioquo/stock-indicators-python/releases)
- [Discussions](https://github.com/DaveSkender/Stock.Indicators/discussions)
- [Contributing](https://github.com/facioquo/stock-indicators-python/blob/main/docs/contributing.md#readme)

## Getting started

### Windows

1. Install .NET SDK (6.0 or newer):
    - Download from [Microsoft .NET Downloads](https://dotnet.microsoft.com/download)
    - Or using winget: `winget install Microsoft.DotNet.SDK.6`
    - Verify: `dotnet --info`

2. Install the package:

    ```bash
    pip install stock-indicators
    ```

### macOS

1. Install .NET SDK (6.0 or newer):

    ```bash
    brew install dotnet-sdk
    dotnet --info  # Verify installation
    ```

2. Install the package:

    ```bash
    pip install stock-indicators
    ```

## Example usage

```python
from stock_indicators import indicators

# fetch your data
quotes = get_history("MSFT")

# calculate 20-period SMA
results = indicators.get_sma(quotes, 20)
```

> **Note:** This is a simple example. For a step-by-step guide, see the [QuickStart Guide](https://github.com/facioquo/stock-indicators-python-quickstart#readme) or our [documentation](https://python.stockindicators.dev/) site.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "stock-indicators",
    "maintainer": "Dong-Geon Lee",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Stock Indicators, Technical Indicators, Market, Technical Analysis, Algorithmic, Trading, Trade, Momentum, Finance, Algorithm, Algo, AlgoTrading, Financial, Strategy, Chart, Charting, Oscillator, Overlay, Equity, Bitcoin, Crypto, Cryptocurrency, Forex, Quantitative, Historical, Quotes, Accumulation, Distribution, ADL, Aroon, True Range, ATR, Bollinger Bands, Commodity, CCI, Chandelier Exit, Chaikin Money Flow, CMF, MFI, Kaufman Adaptive, Moving Average, Convergence, Divergence, MACD, SMA, EMA, DEMA, TEMA, TRIX, Smoothed, Elder-ray, Bull, Bear, Power, Force, Hurst Exponent, Relative, Strength, Index, RSI, Connors RSI, Stochastic, Directional, Movement, ADX, Donchian, Keltner Channel, Heikin-Ashi, Hilbert Transform Instantaneous Trendline, Hull, HMA, Ichimoku Cloud, On-balance Volume, OBV, Price, PMO, PRS, Parabolic SAR, PSAR, Pivot Points, Rate of Change, ROC, Linear Regression, R-Squared, Renko, Schaff Cycle, Slope, Standard Deviation, Beta, Convexity, Correlation, SuperTrend, Ulcer, Ultimate, Vortex, Williams %R, Alligator, Gator, Fractal, Chaos, Choppiness, Endpoint, WMA, ZigZag",
    "author": "Dave Skender",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/95/da/f329ed69bbddd25de968847c663e7242470eab8f0049dbb4b76f3b64dcd1/stock_indicators-1.3.3.tar.gz",
    "platform": null,
    "description": "[![image](https://raw.githubusercontent.com/facioquo/stock-indicators-python/main/docs/assets/social-banner.png)](https://python.stockindicators.dev/)\n\n[![PyPI](https://img.shields.io/pypi/v/stock-indicators?color=blue&label=PyPI)](https://badge.fury.io/py/stock-indicators)\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/stock-indicators?style=flat&logo=Python&logoColor=white&label=Downloads&color=indigo)](https://pypistats.org/packages/stock-indicators)\n\n# Stock Indicators for Python\n\n**Stock Indicators for Python** is a PyPI library package that produces financial market technical indicators.  Send in historical price quotes and get back desired indicators such as moving averages, Relative Strength Index, Stochastic Oscillator, Parabolic SAR, etc.  Nothing more.\n\nIt can be used in any market analysis software using standard OHLCV price quotes for equities, commodities, forex, cryptocurrencies, and others.  We had trading algorithms, machine learning, and charting systems in mind when originally creating this community library.  [Stock Indicators for .NET](https://dotnet.stockindicators.dev/) is also available.\n\nVisit our project site for more information:\n\n- [Overview](https://python.stockindicators.dev/)\n- [Indicators and overlays](https://python.stockindicators.dev/indicators/)\n- [Guide and Pro tips](https://python.stockindicators.dev/guide/)\n- [Release notes](https://github.com/facioquo/stock-indicators-python/releases)\n- [Discussions](https://github.com/DaveSkender/Stock.Indicators/discussions)\n- [Contributing](https://github.com/facioquo/stock-indicators-python/blob/main/docs/contributing.md#readme)\n\n## Getting started\n\n### Windows\n\n1. Install .NET SDK (6.0 or newer):\n    - Download from [Microsoft .NET Downloads](https://dotnet.microsoft.com/download)\n    - Or using winget: `winget install Microsoft.DotNet.SDK.6`\n    - Verify: `dotnet --info`\n\n2. Install the package:\n\n    ```bash\n    pip install stock-indicators\n    ```\n\n### macOS\n\n1. Install .NET SDK (6.0 or newer):\n\n    ```bash\n    brew install dotnet-sdk\n    dotnet --info  # Verify installation\n    ```\n\n2. Install the package:\n\n    ```bash\n    pip install stock-indicators\n    ```\n\n## Example usage\n\n```python\nfrom stock_indicators import indicators\n\n# fetch your data\nquotes = get_history(\"MSFT\")\n\n# calculate 20-period SMA\nresults = indicators.get_sma(quotes, 20)\n```\n\n> **Note:** This is a simple example. For a step-by-step guide, see the [QuickStart Guide](https://github.com/facioquo/stock-indicators-python-quickstart#readme) or our [documentation](https://python.stockindicators.dev/) site.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Stock Indicators for Python.  Send in historical price quotes and get back desired technical indicators such as Stochastic RSI, Average True Range, Parabolic SAR, etc.  Nothing more.",
    "version": "1.3.3",
    "project_urls": {
        "Bug Tracker": "https://github.com/facioquo/stock-indicators-python/issues",
        "Documentation": "https://python.stockindicators.dev",
        "Homepage": "https://python.stockindicators.dev",
        "Release Notes": "https://github.com/facioquo/stock-indicators-python/releases",
        "Source Code": "https://github.com/facioquo/stock-indicators-python/tree/main"
    },
    "split_keywords": [
        "stock indicators",
        " technical indicators",
        " market",
        " technical analysis",
        " algorithmic",
        " trading",
        " trade",
        " momentum",
        " finance",
        " algorithm",
        " algo",
        " algotrading",
        " financial",
        " strategy",
        " chart",
        " charting",
        " oscillator",
        " overlay",
        " equity",
        " bitcoin",
        " crypto",
        " cryptocurrency",
        " forex",
        " quantitative",
        " historical",
        " quotes",
        " accumulation",
        " distribution",
        " adl",
        " aroon",
        " true range",
        " atr",
        " bollinger bands",
        " commodity",
        " cci",
        " chandelier exit",
        " chaikin money flow",
        " cmf",
        " mfi",
        " kaufman adaptive",
        " moving average",
        " convergence",
        " divergence",
        " macd",
        " sma",
        " ema",
        " dema",
        " tema",
        " trix",
        " smoothed",
        " elder-ray",
        " bull",
        " bear",
        " power",
        " force",
        " hurst exponent",
        " relative",
        " strength",
        " index",
        " rsi",
        " connors rsi",
        " stochastic",
        " directional",
        " movement",
        " adx",
        " donchian",
        " keltner channel",
        " heikin-ashi",
        " hilbert transform instantaneous trendline",
        " hull",
        " hma",
        " ichimoku cloud",
        " on-balance volume",
        " obv",
        " price",
        " pmo",
        " prs",
        " parabolic sar",
        " psar",
        " pivot points",
        " rate of change",
        " roc",
        " linear regression",
        " r-squared",
        " renko",
        " schaff cycle",
        " slope",
        " standard deviation",
        " beta",
        " convexity",
        " correlation",
        " supertrend",
        " ulcer",
        " ultimate",
        " vortex",
        " williams %r",
        " alligator",
        " gator",
        " fractal",
        " chaos",
        " choppiness",
        " endpoint",
        " wma",
        " zigzag"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "18e1b5e0fa0c0051387863b5ec77acc48f161c52c352cb5db02b4392a4fbeefb",
                "md5": "f925d76015bf62f43c309f2517eb6a5e",
                "sha256": "0119035e049718fa8c8040d88dbcd39e0f3e1bac076ccae1de455e40c24f329f"
            },
            "downloads": -1,
            "filename": "stock_indicators-1.3.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f925d76015bf62f43c309f2517eb6a5e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 3311470,
            "upload_time": "2025-01-30T01:06:49",
            "upload_time_iso_8601": "2025-01-30T01:06:49.684849Z",
            "url": "https://files.pythonhosted.org/packages/18/e1/b5e0fa0c0051387863b5ec77acc48f161c52c352cb5db02b4392a4fbeefb/stock_indicators-1.3.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "95daf329ed69bbddd25de968847c663e7242470eab8f0049dbb4b76f3b64dcd1",
                "md5": "a81b81d5099344d38195531307432b30",
                "sha256": "71be015d5dac47c53baf723854bdd93553c438c1571e8d3bd9ed4b37cd36a179"
            },
            "downloads": -1,
            "filename": "stock_indicators-1.3.3.tar.gz",
            "has_sig": false,
            "md5_digest": "a81b81d5099344d38195531307432b30",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4677687,
            "upload_time": "2025-01-30T01:06:53",
            "upload_time_iso_8601": "2025-01-30T01:06:53.364128Z",
            "url": "https://files.pythonhosted.org/packages/95/da/f329ed69bbddd25de968847c663e7242470eab8f0049dbb4b76f3b64dcd1/stock_indicators-1.3.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-30 01:06:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "facioquo",
    "github_project": "stock-indicators-python",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "pythonnet",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "typing_extensions",
            "specs": [
                [
                    ">=",
                    "4.4.0"
                ]
            ]
        }
    ],
    "lcname": "stock-indicators"
}
        
Elapsed time: 6.74868s