streamlit-controllerDF


Namestreamlit-controllerDF JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/joshjetson/SCDF/
SummaryA solid base for controlling your data frame, getting quick metrics, and data visualizations using streamlit, pandas, numpy and matplotlib.
upload_time2023-04-28 18:34:08
maintainer
docs_urlNone
authorJoshua Dario
requires_python
licenseMIT
keywords python streamlit dataframe data frame data set visualization automatic widgets automation machine learning quick controller controllerdf controllerdf streamlit controller streamlit data frame streamlit controllerdf
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <img src="https://i.imgur.com/4TfRxmI.png" alt="ctrldf"></img>
  <br/>
  <a href="https://www.python.org/"><img src="https://img.shields.io/badge/python-3670A0?style=plastic&logo=python&logoColor=ffdd54"></img></a>
  <a href="https://streamlit.io/"><img src="https://img.shields.io/badge/-Streamlit-61DAFB?style=plastic&logo=streamlit"></img></a>
  <a href="https://matplotlib.org/"><img src="https://img.shields.io/badge/Matplotlib-%23ffffff.svg?style=plastic&logo=matplotlib&logoColor=black"></img></a>
  <a href="https://numpy.org/doc/stable/index.html"><img src="https://img.shields.io/badge/numpy-%23013243.svg?style=plastic&logo=numpy&logoColor=white"></img></a>
  <a href="https://pandas.pydata.org/docs/index.html"><img src="https://img.shields.io/badge/pandas-%23150458.svg?style=plastic&logo=pandas&logoColor=white"></img></a>
  <a href="http://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg?style=plastic"></img></a>
  </a>

  
  <br/>
  <a href="#Documentation">Documentation</a> ·
  <a href="https://github.com/joshjetson/SCDF/issues">Report a Bug</a> ·
  <a href="#Demo">Demo</a> .
  <a href="https://github.com/joshjetson/SCDF/issues">Request Feature</a> ·
  <a href="https://github.com/joshjetson/SCDF/pulls">Send a Pull Request</a>

</p>

## Controller DF

[]()

<i>A python library which creates a simple and easy to use data frame controller.
Using this library, along with streamlit and minimal (*included*) code, anyone can spin up a web app which allows you to control, manipulate and display a data set quickly and easily.
</i>

## Demo

<table>
<tr>
<td>
<center>

<img src="/pics/exgif.gif"></img>

- Quick column metrics

  <img src="/pics/ex1.gif"></img>

- Rapid column filter

  <img src="/pics/ex3.png"></img>

- Instant type based column widgets

  <img src="/pics/ex2.png"></img>
</center>

</table>
</tr>
</td>

## Installation

```
$ pip install streamlit-controllerDF
```

## Getting started

<i>After you pip install the module</i>

<ins>

**Batteries included method:**

</ins>

<details><summary>Quick start</summary>

>
> - `Copy the included test_code.py`
> - `Rename the file to your projects name`
> ~~~
> $ streamlit run your_project.py 
> ~~~
> - `Drag and drop csv file`
> - `Enjoy!`

</details>

<ins>

**Batteries excluded method:**

</ins>

<details><summary>Module only</summary>

> ~~~
> import streamlit_controllerDF as sc
> ~~~
> - `see documentation for usage`


</details>

## Documentation

<table>
<tr>
<td>

**class streamlit_controllerDF.Widgets(dataframe, omit_columns=list())**


> Parameters:
>> - dataframe: A pandas data frame
>>> - *Two-dimensional, size-mutable, potentially heterogeneous tabular data.*
>> - omit_columns: A list of column names to be excluded
>>> - *The column names must be exact*

#### Example
```
import streamlit_controllerDF as sc
import pandas as pd

mydf = pd.read_csv('mycsv.csv')

ctrldf = sc.Widgets(mydf,omit_columns=['Engine_Size', 'Year'])
```

**method streamlit_controllerDF.Widgets.metrics()**

> Parameters:
>> - *None*

#### Example
```
import streamlit_controllerDF as sc
import pandas as pd

mydf = pd.read_csv('mycsv.csv')

ctrldf = sc.Widgets(mydf,omit_columns=['Engine_Size', 'Year'])

ctrldf.metrics()
```

</table>
</tr>
</td>

## Limitations
- *This library is currently limited to support only files under 20MB*
- *Due to browser limitations only 12000 rows of data can be viewed at a time*

## To Do
*This library is the base of a much larger project.*
- [ ] Create a chart method which will populate various charts automatically
- [ ] Create a model method which will populate various ML models automatically
- [ ] Add support for automated api data import
- [ ] Add support for relational and non relational data bases
- [ ] Add support for automated queries
- [ ] Add support for big data
- [ ] Create large file size detection and implement chunking automatically
- [ ] Migrate from Pandas to Dask
- [ ] After Dask migration remove file size limitation

Thank you for viewing my project
sincerely

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/joshjetson/SCDF/",
    "name": "streamlit-controllerDF",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Python,streamlit,dataframe,data frame,data set,visualization,automatic,widgets,automation,machine learning,quick,controller,controllerdf,controllerDF,streamlit controller,streamlit data frame,streamlit controllerDF",
    "author": "Joshua Dario",
    "author_email": "joshuajdr@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/10/5f/27a930dd5372192970457a1c3bb393d336fab5ececbd0a46d7a36029adc1/streamlit_controllerDF-0.1.1.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <img src=\"https://i.imgur.com/4TfRxmI.png\" alt=\"ctrldf\"></img>\n  <br/>\n  <a href=\"https://www.python.org/\"><img src=\"https://img.shields.io/badge/python-3670A0?style=plastic&logo=python&logoColor=ffdd54\"></img></a>\n  <a href=\"https://streamlit.io/\"><img src=\"https://img.shields.io/badge/-Streamlit-61DAFB?style=plastic&logo=streamlit\"></img></a>\n  <a href=\"https://matplotlib.org/\"><img src=\"https://img.shields.io/badge/Matplotlib-%23ffffff.svg?style=plastic&logo=matplotlib&logoColor=black\"></img></a>\n  <a href=\"https://numpy.org/doc/stable/index.html\"><img src=\"https://img.shields.io/badge/numpy-%23013243.svg?style=plastic&logo=numpy&logoColor=white\"></img></a>\n  <a href=\"https://pandas.pydata.org/docs/index.html\"><img src=\"https://img.shields.io/badge/pandas-%23150458.svg?style=plastic&logo=pandas&logoColor=white\"></img></a>\n  <a href=\"http://opensource.org/licenses/MIT\"><img src=\"https://img.shields.io/badge/License-MIT-yellow.svg?style=plastic\"></img></a>\n  </a>\n\n  \n  <br/>\n  <a href=\"#Documentation\">Documentation</a> \u00b7\n  <a href=\"https://github.com/joshjetson/SCDF/issues\">Report a Bug</a> \u00b7\n  <a href=\"#Demo\">Demo</a> .\n  <a href=\"https://github.com/joshjetson/SCDF/issues\">Request Feature</a> \u00b7\n  <a href=\"https://github.com/joshjetson/SCDF/pulls\">Send a Pull Request</a>\n\n</p>\n\n## Controller DF\n\n[]()\n\n<i>A python library which creates a simple and easy to use data frame controller.\nUsing this library, along with streamlit and minimal (*included*) code, anyone can spin up a web app which allows you to control, manipulate and display a data set quickly and easily.\n</i>\n\n## Demo\n\n<table>\n<tr>\n<td>\n<center>\n\n<img src=\"/pics/exgif.gif\"></img>\n\n- Quick column metrics\n\n  <img src=\"/pics/ex1.gif\"></img>\n\n- Rapid column filter\n\n  <img src=\"/pics/ex3.png\"></img>\n\n- Instant type based column widgets\n\n  <img src=\"/pics/ex2.png\"></img>\n</center>\n\n</table>\n</tr>\n</td>\n\n## Installation\n\n```\n$ pip install streamlit-controllerDF\n```\n\n## Getting started\n\n<i>After you pip install the module</i>\n\n<ins>\n\n**Batteries included method:**\n\n</ins>\n\n<details><summary>Quick start</summary>\n\n>\n> - `Copy the included test_code.py`\n> - `Rename the file to your projects name`\n> ~~~\n> $ streamlit run your_project.py \n> ~~~\n> - `Drag and drop csv file`\n> - `Enjoy!`\n\n</details>\n\n<ins>\n\n**Batteries excluded method:**\n\n</ins>\n\n<details><summary>Module only</summary>\n\n> ~~~\n> import streamlit_controllerDF as sc\n> ~~~\n> - `see documentation for usage`\n\n\n</details>\n\n## Documentation\n\n<table>\n<tr>\n<td>\n\n**class streamlit_controllerDF.Widgets(dataframe, omit_columns=list())**\n\n\n> Parameters:\n>> - dataframe: A pandas data frame\n>>> - *Two-dimensional, size-mutable, potentially heterogeneous tabular data.*\n>> - omit_columns: A list of column names to be excluded\n>>> - *The column names must be exact*\n\n#### Example\n```\nimport streamlit_controllerDF as sc\nimport pandas as pd\n\nmydf = pd.read_csv('mycsv.csv')\n\nctrldf = sc.Widgets(mydf,omit_columns=['Engine_Size', 'Year'])\n```\n\n**method streamlit_controllerDF.Widgets.metrics()**\n\n> Parameters:\n>> - *None*\n\n#### Example\n```\nimport streamlit_controllerDF as sc\nimport pandas as pd\n\nmydf = pd.read_csv('mycsv.csv')\n\nctrldf = sc.Widgets(mydf,omit_columns=['Engine_Size', 'Year'])\n\nctrldf.metrics()\n```\n\n</table>\n</tr>\n</td>\n\n## Limitations\n- *This library is currently limited to support only files under 20MB*\n- *Due to browser limitations only 12000 rows of data can be viewed at a time*\n\n## To Do\n*This library is the base of a much larger project.*\n- [ ] Create a chart method which will populate various charts automatically\n- [ ] Create a model method which will populate various ML models automatically\n- [ ] Add support for automated api data import\n- [ ] Add support for relational and non relational data bases\n- [ ] Add support for automated queries\n- [ ] Add support for big data\n- [ ] Create large file size detection and implement chunking automatically\n- [ ] Migrate from Pandas to Dask\n- [ ] After Dask migration remove file size limitation\n\nThank you for viewing my project\nsincerely\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A solid base for controlling your data frame, getting quick metrics, and data visualizations using streamlit, pandas, numpy and matplotlib.",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/joshjetson/SCDF/"
    },
    "split_keywords": [
        "python",
        "streamlit",
        "dataframe",
        "data frame",
        "data set",
        "visualization",
        "automatic",
        "widgets",
        "automation",
        "machine learning",
        "quick",
        "controller",
        "controllerdf",
        "controllerdf",
        "streamlit controller",
        "streamlit data frame",
        "streamlit controllerdf"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bbe4047a1c1d1cea7c60ab29701bb069502f2199741bdc35043fe7a2495217f2",
                "md5": "26dd64c2442dcd91dc84ad1ce4f3459b",
                "sha256": "e52f2d23e4d39168966035f829cbbb3263a74db1737f43db034d6720a88aa0a4"
            },
            "downloads": -1,
            "filename": "streamlit_controllerDF-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "26dd64c2442dcd91dc84ad1ce4f3459b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5866,
            "upload_time": "2023-04-28T18:34:07",
            "upload_time_iso_8601": "2023-04-28T18:34:07.192204Z",
            "url": "https://files.pythonhosted.org/packages/bb/e4/047a1c1d1cea7c60ab29701bb069502f2199741bdc35043fe7a2495217f2/streamlit_controllerDF-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "105f27a930dd5372192970457a1c3bb393d336fab5ececbd0a46d7a36029adc1",
                "md5": "50401f56b604199d61f6acf4f9b435df",
                "sha256": "3a476449e256f38d812c993487db0193c63d9f78397b1790adf268cd8711fd0e"
            },
            "downloads": -1,
            "filename": "streamlit_controllerDF-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "50401f56b604199d61f6acf4f9b435df",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5974,
            "upload_time": "2023-04-28T18:34:08",
            "upload_time_iso_8601": "2023-04-28T18:34:08.777659Z",
            "url": "https://files.pythonhosted.org/packages/10/5f/27a930dd5372192970457a1c3bb393d336fab5ececbd0a46d7a36029adc1/streamlit_controllerDF-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-28 18:34:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "joshjetson",
    "github_project": "SCDF",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "streamlit-controllerdf"
}
        
Elapsed time: 0.73436s