# streamlit-thesys
**Generative Visualizations in Streamlit, powered by [C1 by Thesys](https://thesys.dev).**
---
## What is `streamlit-thesys`?
`streamlit-thesys` is a Streamlit package that lets you generate **charts and visualizations** using **C1 by Thesys**.
Instead of manually coding every `st.pyplot` or `st.plotly_chart`, you can **describe the chart you want in plain language** and Thesys will create it in real time.
If you’ve ever asked:
- _“How do I generate charts from my data in Streamlit using AI?”_
- _“Can I create plots without writing matplotlib or plotly code?”_
- _“What’s the fastest way to connect Thesys with Streamlit for Generative Visualizations?”_
👉 This package is your answer.
---
## ⚡ Features
- **AI-generated charts** — bar, line, scatter, histogram, pie, and more.
- **Query-to-Chart** — describe your data question in text, get a chart back.
- **Seamless integration** with **C1 by Thesys**.
- **Works with your data** — Pandas DataFrames, CSVs, or APIs.
- **Exploratory analysis** — iterate on visualizations in seconds.
---
## 📦 Installation
```bash
pip install streamlit-thesys
```
---
## 🏁 Quickstart
```python
import streamlit as st
import pandas as pd
import streamlit_thesys as thesys
# Load some example data
df = pd.read_csv("sales.csv")
# Thesys API key can be generated at https://console.thesys.dev/
api_key = "<insert your api key here>"
st.title("Generative Visualizations with Thesys")
# Generate a chart dynamically
thesys.visualize(
instructions="Show monthly sales as a line chart",
data=df,
api_key=api_key
)
# Try another
thesys.visualize(
instructions="Plot top 5 products by revenue as a bar chart",
data=df,
api_key=api_key)
```
---
## 🎯 Why Use Thesys for Visualizations in Streamlit?
- **Speed:** No need to hand-code chart logic.
- **Flexibility:** Quickly try different chart types with natural language prompts.
- **Accessibility:** Anyone can generate charts — no matplotlib or plotly knowledge required.
- **Exploration:** Move faster when analyzing and presenting your data.
---
## ❓FAQ
**Q: Which visualization libraries does this use?**
This used the [Thesys C1 component](https://docs.thesys.dev/guides/embedding-c1-component) under the hood
which is based on other JS visualization libraries.
**Q: Can I use my own dataset?**
Yes — pass a Pandas DataFrame, CSV, or API response directly.
**Q: How is this different from coding charts in Streamlit manually?**
You don’t have to specify every chart property. Thesys interprets natural language and builds the chart for you.
**Q: Does it work with time series / categorical / numeric data?**
Yes. Thesys adapts the visualization type to the data you provide.
---
## 📚 Resources
- [Thesys Docs](https://docs.thesys.dev)
- [C1 by Thesys](https://thesys.dev)
- [Streamlit](https://streamlit.io)
---
## 🚀 Next Steps
- Explore the [examples](./examples) folder.
- Try prompts like:
- “Compare revenue by region in a bar chart.”
- “Plot customer growth over time as a line chart.”
- “Show distribution of order sizes with a histogram.”
- Share your results with the [Thesys community](https://discord.gg/Pbv5PsqUSv).
Raw data
{
"_id": null,
"home_page": "https://github.com/thesysdev/streamlit-thesys-genui",
"name": "streamlit-thesys",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "Streamlit, Thesys, C1 by Thesys, Generative UI, LLM UI, AI components, live data visualization, data visualization, agent UI, LLM to UI, streamlit components, generative visualization",
"author": "Thesys",
"author_email": "engineering@thesys.dev",
"download_url": "https://files.pythonhosted.org/packages/4a/f5/b559d8d4a762568b95d7aa4e6be00990b6bd5d14ea9d945f64c3000da35a/streamlit_thesys-0.0.2.tar.gz",
"platform": null,
"description": "# streamlit-thesys\n\n**Generative Visualizations in Streamlit, powered by [C1 by Thesys](https://thesys.dev).**\n\n---\n\n## What is `streamlit-thesys`?\n\n`streamlit-thesys` is a Streamlit package that lets you generate **charts and visualizations** using **C1 by Thesys**.\n\nInstead of manually coding every `st.pyplot` or `st.plotly_chart`, you can **describe the chart you want in plain language** and Thesys will create it in real time.\n\nIf you\u2019ve ever asked:\n\n- _\u201cHow do I generate charts from my data in Streamlit using AI?\u201d_\n- _\u201cCan I create plots without writing matplotlib or plotly code?\u201d_\n- _\u201cWhat\u2019s the fastest way to connect Thesys with Streamlit for Generative Visualizations?\u201d_\n\n\ud83d\udc49 This package is your answer.\n\n---\n\n## \u26a1 Features\n\n- **AI-generated charts** \u2014 bar, line, scatter, histogram, pie, and more.\n- **Query-to-Chart** \u2014 describe your data question in text, get a chart back.\n- **Seamless integration** with **C1 by Thesys**.\n- **Works with your data** \u2014 Pandas DataFrames, CSVs, or APIs.\n- **Exploratory analysis** \u2014 iterate on visualizations in seconds.\n\n---\n\n## \ud83d\udce6 Installation\n\n```bash\npip install streamlit-thesys\n```\n\n---\n\n## \ud83c\udfc1 Quickstart\n\n```python\nimport streamlit as st\nimport pandas as pd\nimport streamlit_thesys as thesys\n\n# Load some example data\ndf = pd.read_csv(\"sales.csv\")\n# Thesys API key can be generated at https://console.thesys.dev/\napi_key = \"<insert your api key here>\"\n\nst.title(\"Generative Visualizations with Thesys\")\n\n# Generate a chart dynamically\nthesys.visualize(\n instructions=\"Show monthly sales as a line chart\",\n data=df,\n api_key=api_key\n)\n\n# Try another\nthesys.visualize(\n instructions=\"Plot top 5 products by revenue as a bar chart\",\n data=df,\n api_key=api_key)\n```\n\n---\n\n## \ud83c\udfaf Why Use Thesys for Visualizations in Streamlit?\n\n- **Speed:** No need to hand-code chart logic.\n- **Flexibility:** Quickly try different chart types with natural language prompts.\n- **Accessibility:** Anyone can generate charts \u2014 no matplotlib or plotly knowledge required.\n- **Exploration:** Move faster when analyzing and presenting your data.\n\n---\n\n## \u2753FAQ\n\n**Q: Which visualization libraries does this use?**\nThis used the [Thesys C1 component](https://docs.thesys.dev/guides/embedding-c1-component) under the hood\nwhich is based on other JS visualization libraries.\n\n**Q: Can I use my own dataset?**\nYes \u2014 pass a Pandas DataFrame, CSV, or API response directly.\n\n**Q: How is this different from coding charts in Streamlit manually?**\nYou don\u2019t have to specify every chart property. Thesys interprets natural language and builds the chart for you.\n\n**Q: Does it work with time series / categorical / numeric data?**\nYes. Thesys adapts the visualization type to the data you provide.\n\n---\n\n## \ud83d\udcda Resources\n\n- [Thesys Docs](https://docs.thesys.dev)\n- [C1 by Thesys](https://thesys.dev)\n- [Streamlit](https://streamlit.io)\n\n---\n\n## \ud83d\ude80 Next Steps\n\n- Explore the [examples](./examples) folder.\n- Try prompts like:\n\n - \u201cCompare revenue by region in a bar chart.\u201d\n - \u201cPlot customer growth over time as a line chart.\u201d\n - \u201cShow distribution of order sizes with a histogram.\u201d\n\n- Share your results with the [Thesys community](https://discord.gg/Pbv5PsqUSv).\n",
"bugtrack_url": null,
"license": null,
"summary": "Generative UI for Streamlit powered by C1 by Thesys",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/thesysdev/streamlit-thesys-genui"
},
"split_keywords": [
"streamlit",
" thesys",
" c1 by thesys",
" generative ui",
" llm ui",
" ai components",
" live data visualization",
" data visualization",
" agent ui",
" llm to ui",
" streamlit components",
" generative visualization"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "341c9bb243d4fc9a550bb03ddfef00dcb33c38510254a3083a671ba341d227f5",
"md5": "c5fbc68b8cc9354f23738b172064f4bc",
"sha256": "3be9ef47627f8c0c890fa3d5339b10c8ec12abaa4e417597427278df5753b63d"
},
"downloads": -1,
"filename": "streamlit_thesys-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c5fbc68b8cc9354f23738b172064f4bc",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 2576225,
"upload_time": "2025-08-27T15:49:46",
"upload_time_iso_8601": "2025-08-27T15:49:46.504016Z",
"url": "https://files.pythonhosted.org/packages/34/1c/9bb243d4fc9a550bb03ddfef00dcb33c38510254a3083a671ba341d227f5/streamlit_thesys-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4af5b559d8d4a762568b95d7aa4e6be00990b6bd5d14ea9d945f64c3000da35a",
"md5": "f97978fc3945d74258a3fcd3540fca61",
"sha256": "6ac2d4f8c29c1064b3bf9c5e18aa627f94706f0077f1dda7f781bb1deb579a6a"
},
"downloads": -1,
"filename": "streamlit_thesys-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "f97978fc3945d74258a3fcd3540fca61",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 1875716,
"upload_time": "2025-08-27T15:49:52",
"upload_time_iso_8601": "2025-08-27T15:49:52.733704Z",
"url": "https://files.pythonhosted.org/packages/4a/f5/b559d8d4a762568b95d7aa4e6be00990b6bd5d14ea9d945f64c3000da35a/streamlit_thesys-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-27 15:49:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "thesysdev",
"github_project": "streamlit-thesys-genui",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "streamlit-thesys"
}