streams-explorer


Namestreams-explorer JSON
Version 2.4.0 PyPI version JSON
download
home_pagehttps://github.com/bakdata/streams-explorer
SummaryExplore Data Pipelines in Apache Kafka.
upload_time2024-09-18 15:37:38
maintainerNone
docs_urlNone
authorbakdata
requires_python<4.0,>=3.10
licenseMIT
keywords kafka kubernetes stream-processing monitoring pipelines
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Streams Explorer

> Explore Apache Kafka data pipelines in Kubernetes.

![streams-explorer](https://github.com/bakdata/streams-explorer/blob/main/screens/overview.png?raw=true)

> **Note**
> We are participating in the annual Hacktoberfest. If you're looking to contribute, please see our [open issues](https://github.com/bakdata/streams-explorer/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc+label%3Ahacktoberfest) and use the [standalone installation](#standalone) for development.

## Contents

- [Streams Explorer](#streams-explorer)
  - [Features](#features)
  - [Overview](#overview)
  - [Installation](#installation)
    - [Docker Compose](#docker-compose)
    - [Deploying to Kubernetes cluster](#deploying-to-kubernetes-cluster)
    - [Standalone](#standalone)
      - [Backend](#backend)
      - [Frontend](#frontend)
  - [Configuration](#configuration)
    - [Kafka](#kafka)
    - [Kafka Connect](#kafka-connect)
    - [Kubernetes](#kubernetes)
    - [Schema Registry / Karapace](#schema-registry--karapace)
    - [Prometheus](#prometheus)
    - [AKHQ](#akhq)
    - [Redpanda Console](#redpanda-console)
    - [Grafana](#grafana)
    - [Kibana](#kibana)
    - [Elasticsearch](#elasticsearch)
    - [Plugins](#plugins)
  - [Demo pipeline](#demo-pipeline)
  - [Plugin customization](#plugin-customization)

## Features

- Visualization of streaming applications, topics, and connectors
- Monitor all or individual pipelines from multiple namespaces
- Inspection of Avro schema from schema registry
- Integration with [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) and [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), or custom streaming app config parsing from Kubernetes deployments using plugins
- Real-time metrics from Prometheus (consumer lag & read rate, replicas, topic size, messages in & out per second, connector tasks)
- Linking to external services for logging and analysis, such as Kibana, Grafana, Loki, AKHQ, Redpanda Console, and Elasticsearch
- Customizable through Python plugins

## Overview

Visit our introduction [blogpost](https://medium.com/bakdata/exploring-data-pipelines-in-apache-kafka-with-streams-explorer-8337dd11fdad) for a complete overview and demo of Streams Explorer.

## Installation

> **Prerequisites**
> Access to a Kubernetes cluster, where streaming apps and services are deployed.

### Docker Compose

1. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
2. Start the container

```sh
docker compose up
```

Once the container is started visit <http://localhost:8080>

### Deploying to Kubernetes cluster

1. Add the Helm chart repository

```sh
helm repo add streams-explorer https://bakdata.github.io/streams-explorer
```

2. Install

```sh
helm upgrade --install --values helm-chart/values.yaml streams-explorer streams-explorer/streams-explorer
```

### Standalone

#### Backend

1. Install dependencies using [Poetry](https://python-poetry.org)

```sh
poetry install
```

2. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
3. Configure the backend in [settings.yaml](backend/settings.yaml).
4. Start the backend server

```sh
poetry run start
```

#### Frontend

1. Install dependencies

```sh
npm ci
```

2. Start the frontend server

```sh
npm run build && npm run prod
```

Visit <http://localhost:3000>

## Configuration

Depending on your type of installation set the configuration for the backend server in this file:

- **Docker Compose**: [docker-compose.yaml](docker-compose.yaml)
- **Kubernetes**: [helm-chart/values.yaml](helm-chart/values.yaml)
- **standalone**: [backend/settings.yaml](backend/settings.yaml)

In the [helm-chart/values.yaml](helm-chart/values.yaml) configuration is done either through the `config` section using double underscore notation, e.g. `K8S__consumer_group_annotation: consumerGroup` or the content of [backend/settings.yaml](backend/settings.yaml) can be pasted under the `settings` section. Alternatively all configuration options can be written as environment variables using double underscore notation and the prefix `SE`, e.g. `SE_K8S__deployment__cluster=false`.

The following configuration options are available:

#### General

- `graph.update_interval` Render the graph every x seconds (int, **required**, default: `30`)
- `graph.layout_arguments` Arguments passed to graphviz layout (string, **required**, default: `-Grankdir=LR -Gnodesep=0.8 -Gpad=10`)
- `graph.pipeline_distance` Increase/decrease vertical space between pipeline graphs by X pixels (int, **required**, default: `500`)
- `graph.resolve.input_pattern_topics.all` If true topics that match (extra) input pattern(s) are connected to the streaming app in the graph containing all pipelines (bool, **required**, default: `false`)
- `graph.resolve.input_pattern_topics.pipelines` If true topics that match (extra) input pattern(s) are connected to the streaming app in pipeline graphs (bool, **required**, default: `false`)

#### Kafka

- `kafka.enable` Enable Kafka (bool, default: `false`)
- `kafka.config` librdkafka configuration properties ([reference](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md)) (dict, default: `{"bootstrap.servers": "localhost:9092"}`)
- `kafka.displayed_information` Configuration options of Kafka topics displayed in the frontend (list of dict)
- `kafka.topic_names_cache.ttl` Cache for retrieving all topic names (used when input topic patterns are resolved) (int, default: `3600`)

#### Kafka Connect

- `kafkaconnect.url` URL of Kafka Connect server (string, default: None)
- `kafkaconnect.update_interval` Fetch connectors every x seconds (int, default: `300`)
- `kafkaconnect.displayed_information` Configuration options of Kafka connectors displayed in the frontend (list of dict)

#### Kubernetes

- `k8s.deployment.cluster` Whether streams-explorer is deployed to Kubernetes cluster (bool, **required**, default: `false`)
- `k8s.deployment.context` Name of cluster (string, optional if running in cluster, default: `kubernetes-cluster`)
- `k8s.deployment.namespaces` Kubernetes namespaces (list of string, **required**, default: `['kubernetes-namespace']`)
- `k8s.containers.ignore` Name of containers that should be ignored/hidden (list of string, default: `['prometheus-jmx-exporter']`)
- `k8s.displayed_information` Details of pod that should be displayed (list of dict, default: `[{'name': 'Labels', 'key': 'metadata.labels'}]`)
- `k8s.labels` Labels used to set attributes of nodes (list of string, **required**, default: `['pipeline']`)
- `k8s.pipeline.label` Attribute of nodes the pipeline name should be extracted from (string, **required**, default: `pipeline`)
- `k8s.consumer_group_annotation` Annotation the consumer group name should be extracted from (string, **required**, default: `consumerGroup`)

#### Schema Registry / Karapace

- `schemaregistry.url` URL of Confluent Schema Registry or Karapace (string, default: None)

#### Prometheus

- `prometheus.url` URL of Prometheus (string, **required**, default: `http://localhost:9090`)

The following exporters are required to collect Kafka metrics for Prometheus:

- [Kafka Exporter](https://github.com/danielqsj/kafka_exporter)
- [Kafka Lag Exporter](https://github.com/lightbend/kafka-lag-exporter)
- [Kafka Connect Exporter](https://github.com/wakeful/kafka_connect_exporter)

#### AKHQ

- `akhq.enable` Enable AKHQ (bool, default: `false`)
- `akhq.url` URL of AKHQ (string, default: `http://localhost:8080`)
- `akhq.cluster` Name of cluster (string, default: `kubernetes-cluster`)
- `akhq.connect` Name of connect (string, default: None)

#### Redpanda Console

Redpanda Console can be used instead of AKHQ. (mutually exclusive)

- `redpanda_console.enable` Enable Redpanda Console (bool, default: `false`)
- `redpanda_console.url` URL of Redpanda Console (string, default: `http://localhost:8080`)

#### Grafana

- `grafana.enable` Enable Grafana (bool, default: `false`)
- `grafana.url` URL of Grafana (string, default: `http://localhost:3000`)
- `grafana.dashboards.topics` Path to topics dashboard (string), sample dashboards for topics and consumer groups are included in the [`./grafana`](https://github.com/bakdata/streams-explorer/tree/main/grafana) subfolder
- `grafana.dashboards.consumergroups` Path to consumer groups dashboard (string)

#### Kibana

- `kibanalogs.enable` Enable Kibana logs (bool, default: `false`)
- `kibanalogs.url` URL of Kibana logs (string, default: `http://localhost:5601`)

#### Loki

Loki can be used instead of Kibana. (mutually exclusive)

- `loki.enable` Enable Loki logs (bool, default: `false`)
- `loki.url` URL of Loki logs (string, default: `http://localhost:3000`)

#### Elasticsearch

for Kafka Connect Elasticsearch connector

- `esindex.url` URL of Elasticsearch index (string, default: `http://localhost:5601/app/kibana#/dev_tools/console`)

#### Plugins

- `plugins.path` Path to folder containing plugins relative to backend (string, **required**, default: `./plugins`)
- `plugins.extractors.default` Whether to load default extractors (bool, **required**, default: `true`)

## Demo pipeline

![demo-pipeline](https://github.com/bakdata/streams-explorer/blob/main/screens/demo-pipeline.png?raw=true)

[ATM Fraud detection with streams-bootstrap](https://github.com/bakdata/pipeline-atm-fraud)

## Plugin customization

It is possible to create your own config parser, linker, metric provider, and extractors in Python by implementing the `K8sConfigParser`, `LinkingService`, `MetricProvider`, or `Extractor` classes. This way you can customize it to your specific setup and services. As an example we provide the [`DefaultLinker`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/defaultlinker.py) as `LinkingService`. The default [`MetricProvider`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/services/metric_providers.py) supports Prometheus. Furthermore the following default `Extractor` plugins are included:

- [`ElasticsearchSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/elasticsearch_sink.py)
- [`JdbcSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/jdbc_sink.py)
- [`S3Sink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/s3_sink.py)
- [`GenericSink`/`GenericSource`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/generic.py)

If your streaming application deployments are configured through environment variables, following the schema of [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) or [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), the Streams Explorer works out-of-the-box with the default deployment parser.
For streams-bootstrap deployments configured through CLI arguments a separate parser can be loaded by creating a Python file (e.g. `config_parser.py`) in the plugins folder with the following import statement:

```python
from streams_explorer.core.k8s_config_parser import StreamsBootstrapArgsParser
```

For other setups a custom config parser plugin can be created by inheriting from the [`K8sConfigParser`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/k8s_config_parser.py) class and implementing the `parse` method. In this example we're retrieving the streaming app configurations from an external REST API. In order for a deployment to be indentified as streaming app, input and output topics are required.

```python
import httpx

from streams_explorer.core.k8s_config_parser import K8sConfigParser
from streams_explorer.models.k8s import K8sConfig


class CustomConfigParser(K8sConfigParser):
    def get_name(self) -> str:
        name = self.k8s_app.metadata.name
        if not name:
            raise TypeError(f"Name is required for {self.k8s_app.class_name}")
        return name

    def parse(self) -> K8sConfig:
        """Retrieve app config from REST endpoint."""
        name = self.get_name()
        data = httpx.get(f"url/config/{name}").json()
        return K8sConfig(**data)
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/bakdata/streams-explorer",
    "name": "streams-explorer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "kafka, kubernetes, stream-processing, monitoring, pipelines",
    "author": "bakdata",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/6a/ac/d0c421f173460c802f075886fe71a7ab111463fdf15cc9fe2bc14ace566f/streams_explorer-2.4.0.tar.gz",
    "platform": null,
    "description": "# Streams Explorer\n\n> Explore Apache Kafka data pipelines in Kubernetes.\n\n![streams-explorer](https://github.com/bakdata/streams-explorer/blob/main/screens/overview.png?raw=true)\n\n> **Note**\n> We are participating in the annual Hacktoberfest. If you're looking to contribute, please see our [open issues](https://github.com/bakdata/streams-explorer/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc+label%3Ahacktoberfest) and use the [standalone installation](#standalone) for development.\n\n## Contents\n\n- [Streams Explorer](#streams-explorer)\n  - [Features](#features)\n  - [Overview](#overview)\n  - [Installation](#installation)\n    - [Docker Compose](#docker-compose)\n    - [Deploying to Kubernetes cluster](#deploying-to-kubernetes-cluster)\n    - [Standalone](#standalone)\n      - [Backend](#backend)\n      - [Frontend](#frontend)\n  - [Configuration](#configuration)\n    - [Kafka](#kafka)\n    - [Kafka Connect](#kafka-connect)\n    - [Kubernetes](#kubernetes)\n    - [Schema Registry / Karapace](#schema-registry--karapace)\n    - [Prometheus](#prometheus)\n    - [AKHQ](#akhq)\n    - [Redpanda Console](#redpanda-console)\n    - [Grafana](#grafana)\n    - [Kibana](#kibana)\n    - [Elasticsearch](#elasticsearch)\n    - [Plugins](#plugins)\n  - [Demo pipeline](#demo-pipeline)\n  - [Plugin customization](#plugin-customization)\n\n## Features\n\n- Visualization of streaming applications, topics, and connectors\n- Monitor all or individual pipelines from multiple namespaces\n- Inspection of Avro schema from schema registry\n- Integration with [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) and [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), or custom streaming app config parsing from Kubernetes deployments using plugins\n- Real-time metrics from Prometheus (consumer lag & read rate, replicas, topic size, messages in & out per second, connector tasks)\n- Linking to external services for logging and analysis, such as Kibana, Grafana, Loki, AKHQ, Redpanda Console, and Elasticsearch\n- Customizable through Python plugins\n\n## Overview\n\nVisit our introduction [blogpost](https://medium.com/bakdata/exploring-data-pipelines-in-apache-kafka-with-streams-explorer-8337dd11fdad) for a complete overview and demo of Streams Explorer.\n\n## Installation\n\n> **Prerequisites**\n> Access to a Kubernetes cluster, where streaming apps and services are deployed.\n\n### Docker Compose\n\n1. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)\n2. Start the container\n\n```sh\ndocker compose up\n```\n\nOnce the container is started visit <http://localhost:8080>\n\n### Deploying to Kubernetes cluster\n\n1. Add the Helm chart repository\n\n```sh\nhelm repo add streams-explorer https://bakdata.github.io/streams-explorer\n```\n\n2. Install\n\n```sh\nhelm upgrade --install --values helm-chart/values.yaml streams-explorer streams-explorer/streams-explorer\n```\n\n### Standalone\n\n#### Backend\n\n1. Install dependencies using [Poetry](https://python-poetry.org)\n\n```sh\npoetry install\n```\n\n2. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)\n3. Configure the backend in [settings.yaml](backend/settings.yaml).\n4. Start the backend server\n\n```sh\npoetry run start\n```\n\n#### Frontend\n\n1. Install dependencies\n\n```sh\nnpm ci\n```\n\n2. Start the frontend server\n\n```sh\nnpm run build && npm run prod\n```\n\nVisit <http://localhost:3000>\n\n## Configuration\n\nDepending on your type of installation set the configuration for the backend server in this file:\n\n- **Docker Compose**: [docker-compose.yaml](docker-compose.yaml)\n- **Kubernetes**: [helm-chart/values.yaml](helm-chart/values.yaml)\n- **standalone**: [backend/settings.yaml](backend/settings.yaml)\n\nIn the [helm-chart/values.yaml](helm-chart/values.yaml) configuration is done either through the `config` section using double underscore notation, e.g. `K8S__consumer_group_annotation: consumerGroup` or the content of [backend/settings.yaml](backend/settings.yaml) can be pasted under the `settings` section. Alternatively all configuration options can be written as environment variables using double underscore notation and the prefix `SE`, e.g. `SE_K8S__deployment__cluster=false`.\n\nThe following configuration options are available:\n\n#### General\n\n- `graph.update_interval` Render the graph every x seconds (int, **required**, default: `30`)\n- `graph.layout_arguments` Arguments passed to graphviz layout (string, **required**, default: `-Grankdir=LR -Gnodesep=0.8 -Gpad=10`)\n- `graph.pipeline_distance` Increase/decrease vertical space between pipeline graphs by X pixels (int, **required**, default: `500`)\n- `graph.resolve.input_pattern_topics.all` If true topics that match (extra) input pattern(s) are connected to the streaming app in the graph containing all pipelines (bool, **required**, default: `false`)\n- `graph.resolve.input_pattern_topics.pipelines` If true topics that match (extra) input pattern(s) are connected to the streaming app in pipeline graphs (bool, **required**, default: `false`)\n\n#### Kafka\n\n- `kafka.enable` Enable Kafka (bool, default: `false`)\n- `kafka.config` librdkafka configuration properties ([reference](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md)) (dict, default: `{\"bootstrap.servers\": \"localhost:9092\"}`)\n- `kafka.displayed_information` Configuration options of Kafka topics displayed in the frontend (list of dict)\n- `kafka.topic_names_cache.ttl` Cache for retrieving all topic names (used when input topic patterns are resolved) (int, default: `3600`)\n\n#### Kafka Connect\n\n- `kafkaconnect.url` URL of Kafka Connect server (string, default: None)\n- `kafkaconnect.update_interval` Fetch connectors every x seconds (int, default: `300`)\n- `kafkaconnect.displayed_information` Configuration options of Kafka connectors displayed in the frontend (list of dict)\n\n#### Kubernetes\n\n- `k8s.deployment.cluster` Whether streams-explorer is deployed to Kubernetes cluster (bool, **required**, default: `false`)\n- `k8s.deployment.context` Name of cluster (string, optional if running in cluster, default: `kubernetes-cluster`)\n- `k8s.deployment.namespaces` Kubernetes namespaces (list of string, **required**, default: `['kubernetes-namespace']`)\n- `k8s.containers.ignore` Name of containers that should be ignored/hidden (list of string, default: `['prometheus-jmx-exporter']`)\n- `k8s.displayed_information` Details of pod that should be displayed (list of dict, default: `[{'name': 'Labels', 'key': 'metadata.labels'}]`)\n- `k8s.labels` Labels used to set attributes of nodes (list of string, **required**, default: `['pipeline']`)\n- `k8s.pipeline.label` Attribute of nodes the pipeline name should be extracted from (string, **required**, default: `pipeline`)\n- `k8s.consumer_group_annotation` Annotation the consumer group name should be extracted from (string, **required**, default: `consumerGroup`)\n\n#### Schema Registry / Karapace\n\n- `schemaregistry.url` URL of Confluent Schema Registry or Karapace (string, default: None)\n\n#### Prometheus\n\n- `prometheus.url` URL of Prometheus (string, **required**, default: `http://localhost:9090`)\n\nThe following exporters are required to collect Kafka metrics for Prometheus:\n\n- [Kafka Exporter](https://github.com/danielqsj/kafka_exporter)\n- [Kafka Lag Exporter](https://github.com/lightbend/kafka-lag-exporter)\n- [Kafka Connect Exporter](https://github.com/wakeful/kafka_connect_exporter)\n\n#### AKHQ\n\n- `akhq.enable` Enable AKHQ (bool, default: `false`)\n- `akhq.url` URL of AKHQ (string, default: `http://localhost:8080`)\n- `akhq.cluster` Name of cluster (string, default: `kubernetes-cluster`)\n- `akhq.connect` Name of connect (string, default: None)\n\n#### Redpanda Console\n\nRedpanda Console can be used instead of AKHQ. (mutually exclusive)\n\n- `redpanda_console.enable` Enable Redpanda Console (bool, default: `false`)\n- `redpanda_console.url` URL of Redpanda Console (string, default: `http://localhost:8080`)\n\n#### Grafana\n\n- `grafana.enable` Enable Grafana (bool, default: `false`)\n- `grafana.url` URL of Grafana (string, default: `http://localhost:3000`)\n- `grafana.dashboards.topics` Path to topics dashboard (string), sample dashboards for topics and consumer groups are included in the [`./grafana`](https://github.com/bakdata/streams-explorer/tree/main/grafana) subfolder\n- `grafana.dashboards.consumergroups` Path to consumer groups dashboard (string)\n\n#### Kibana\n\n- `kibanalogs.enable` Enable Kibana logs (bool, default: `false`)\n- `kibanalogs.url` URL of Kibana logs (string, default: `http://localhost:5601`)\n\n#### Loki\n\nLoki can be used instead of Kibana. (mutually exclusive)\n\n- `loki.enable` Enable Loki logs (bool, default: `false`)\n- `loki.url` URL of Loki logs (string, default: `http://localhost:3000`)\n\n#### Elasticsearch\n\nfor Kafka Connect Elasticsearch connector\n\n- `esindex.url` URL of Elasticsearch index (string, default: `http://localhost:5601/app/kibana#/dev_tools/console`)\n\n#### Plugins\n\n- `plugins.path` Path to folder containing plugins relative to backend (string, **required**, default: `./plugins`)\n- `plugins.extractors.default` Whether to load default extractors (bool, **required**, default: `true`)\n\n## Demo pipeline\n\n![demo-pipeline](https://github.com/bakdata/streams-explorer/blob/main/screens/demo-pipeline.png?raw=true)\n\n[ATM Fraud detection with streams-bootstrap](https://github.com/bakdata/pipeline-atm-fraud)\n\n## Plugin customization\n\nIt is possible to create your own config parser, linker, metric provider, and extractors in Python by implementing the `K8sConfigParser`, `LinkingService`, `MetricProvider`, or `Extractor` classes. This way you can customize it to your specific setup and services. As an example we provide the [`DefaultLinker`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/defaultlinker.py) as `LinkingService`. The default [`MetricProvider`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/services/metric_providers.py) supports Prometheus. Furthermore the following default `Extractor` plugins are included:\n\n- [`ElasticsearchSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/elasticsearch_sink.py)\n- [`JdbcSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/jdbc_sink.py)\n- [`S3Sink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/s3_sink.py)\n- [`GenericSink`/`GenericSource`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/generic.py)\n\nIf your streaming application deployments are configured through environment variables, following the schema of [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) or [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), the Streams Explorer works out-of-the-box with the default deployment parser.\nFor streams-bootstrap deployments configured through CLI arguments a separate parser can be loaded by creating a Python file (e.g. `config_parser.py`) in the plugins folder with the following import statement:\n\n```python\nfrom streams_explorer.core.k8s_config_parser import StreamsBootstrapArgsParser\n```\n\nFor other setups a custom config parser plugin can be created by inheriting from the [`K8sConfigParser`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/k8s_config_parser.py) class and implementing the `parse` method. In this example we're retrieving the streaming app configurations from an external REST API. In order for a deployment to be indentified as streaming app, input and output topics are required.\n\n```python\nimport httpx\n\nfrom streams_explorer.core.k8s_config_parser import K8sConfigParser\nfrom streams_explorer.models.k8s import K8sConfig\n\n\nclass CustomConfigParser(K8sConfigParser):\n    def get_name(self) -> str:\n        name = self.k8s_app.metadata.name\n        if not name:\n            raise TypeError(f\"Name is required for {self.k8s_app.class_name}\")\n        return name\n\n    def parse(self) -> K8sConfig:\n        \"\"\"Retrieve app config from REST endpoint.\"\"\"\n        name = self.get_name()\n        data = httpx.get(f\"url/config/{name}\").json()\n        return K8sConfig(**data)\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Explore Data Pipelines in Apache Kafka.",
    "version": "2.4.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/bakdata/streams-explorer/issues",
        "Homepage": "https://github.com/bakdata/streams-explorer",
        "Repository": "https://github.com/bakdata/streams-explorer"
    },
    "split_keywords": [
        "kafka",
        " kubernetes",
        " stream-processing",
        " monitoring",
        " pipelines"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "204b441750fa33b489cb57cf6f437a356efe470ba7bc951d1560d0ba951309f3",
                "md5": "37c1d21a156e2b1bbfefc7276a793228",
                "sha256": "d15bd8675cc49ba2dc53da0e0cbf20b06c324a07fc77141c6ddbe552ae869246"
            },
            "downloads": -1,
            "filename": "streams_explorer-2.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "37c1d21a156e2b1bbfefc7276a793228",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 47125,
            "upload_time": "2024-09-18T15:37:37",
            "upload_time_iso_8601": "2024-09-18T15:37:37.039272Z",
            "url": "https://files.pythonhosted.org/packages/20/4b/441750fa33b489cb57cf6f437a356efe470ba7bc951d1560d0ba951309f3/streams_explorer-2.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6aacd0c421f173460c802f075886fe71a7ab111463fdf15cc9fe2bc14ace566f",
                "md5": "7fdf5c7773fe6066e7dd1cf08ab60486",
                "sha256": "34a8e0d116c8ebaee91040fc8cb35576e8ec02616139dbc9b0e664347a803f1c"
            },
            "downloads": -1,
            "filename": "streams_explorer-2.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "7fdf5c7773fe6066e7dd1cf08ab60486",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 34585,
            "upload_time": "2024-09-18T15:37:38",
            "upload_time_iso_8601": "2024-09-18T15:37:38.418911Z",
            "url": "https://files.pythonhosted.org/packages/6a/ac/d0c421f173460c802f075886fe71a7ab111463fdf15cc9fe2bc14ace566f/streams_explorer-2.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-18 15:37:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bakdata",
    "github_project": "streams-explorer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "streams-explorer"
}
        
Elapsed time: 0.34473s