strictly-typed-pandas


Namestrictly-typed-pandas JSON
Version 0.3.5 PyPI version JSON
download
home_pagehttps://github.com/nanne-aben/strictly_typed_pandas
SummaryStatic type checking of pandas DataFrames
upload_time2024-11-15 18:14:51
maintainerNone
docs_urlNone
authorNanne Aben
requires_python>=3.8.0
licenseMIT
keywords typing type checking pandas mypy linting
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ================================================================
Strictly Typed Pandas: static type checking of pandas DataFrames
================================================================

I love Pandas! But in production code I’m always a bit wary when I see:

.. code-block:: python

    import pandas as pd

    def foo(df: pd.DataFrame) -> pd.DataFrame:
        # do stuff
        return df

Because… How do I know which columns are supposed to be in `df`?

Using `strictly_typed_pandas`, we can be more explicit about what these data should look like.

.. code-block:: python

    from strictly_typed_pandas import DataSet

    class Schema:
        id: int
        name: str

    def foo(df: DataSet[Schema]) -> DataSet[Schema]:
        # do stuff
        return df

Where `DataSet`:
    * is a subclass of `pd.DataFrame` and hence has the same functionality as `DataFrame`.
    * validates whether the data adheres to the provided schema upon its initialization.
    * is immutable, so its schema cannot be changed using inplace modifications.

The `DataSet[Schema]` annotations are compatible with:
    * `mypy` for type checking during linting-time (i.e. while you write your code).
    * `typeguard` (<v3.0) for type checking during run-time (i.e. while you run your unit tests).

To get the most out of `strictly_typed_pandas`, be sure to:
    * set up `mypy` in your IDE.
    * run your unit tests with `pytest --stp-typeguard-packages=foo.bar` (where `foo.bar` is your package name).

Installation
============

.. code-block:: bash

    pip install strictly-typed-pandas


Documentation
=================
For example notebooks and API documentation, please see our `ReadTheDocs <https://strictly-typed-pandas.readthedocs.io/>`_.

FAQ
===

| **Do you know of something similar for pyspark?**
| Yes! Check out our package `typedspark <https://github.com/kaiko-ai/typedspark/>`_.
|
| **Why use Python if you want static typing?**
| There are just so many good packages for data science in Python. Rather than sacrificing all of that by moving to a different language, I'd like to make the Pythonverse a little bit better.
|
| **I found a bug! What should I do?**
| Great! Contact me and I'll look into it.
|
| **I have a great idea to improve strictly_typed_pandas! How can we make this work?**
| Awesome, drop me a line!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nanne-aben/strictly_typed_pandas",
    "name": "strictly-typed-pandas",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8.0",
    "maintainer_email": null,
    "keywords": "typing type checking pandas mypy linting",
    "author": "Nanne Aben",
    "author_email": "nanne.aben@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3b/33/bdbb81a51963119a4a96db29f36c4396636181287d96ab6130332ff32b09/strictly_typed_pandas-0.3.5.tar.gz",
    "platform": null,
    "description": "================================================================\nStrictly Typed Pandas: static type checking of pandas DataFrames\n================================================================\n\nI love Pandas! But in production code I\u2019m always a bit wary when I see:\n\n.. code-block:: python\n\n    import pandas as pd\n\n    def foo(df: pd.DataFrame) -> pd.DataFrame:\n        # do stuff\n        return df\n\nBecause\u2026 How do I know which columns are supposed to be in `df`?\n\nUsing `strictly_typed_pandas`, we can be more explicit about what these data should look like.\n\n.. code-block:: python\n\n    from strictly_typed_pandas import DataSet\n\n    class Schema:\n        id: int\n        name: str\n\n    def foo(df: DataSet[Schema]) -> DataSet[Schema]:\n        # do stuff\n        return df\n\nWhere `DataSet`:\n    * is a subclass of `pd.DataFrame` and hence has the same functionality as `DataFrame`.\n    * validates whether the data adheres to the provided schema upon its initialization.\n    * is immutable, so its schema cannot be changed using inplace modifications.\n\nThe `DataSet[Schema]` annotations are compatible with:\n    * `mypy` for type checking during linting-time (i.e. while you write your code).\n    * `typeguard` (<v3.0) for type checking during run-time (i.e. while you run your unit tests).\n\nTo get the most out of `strictly_typed_pandas`, be sure to:\n    * set up `mypy` in your IDE.\n    * run your unit tests with `pytest --stp-typeguard-packages=foo.bar` (where `foo.bar` is your package name).\n\nInstallation\n============\n\n.. code-block:: bash\n\n    pip install strictly-typed-pandas\n\n\nDocumentation\n=================\nFor example notebooks and API documentation, please see our `ReadTheDocs <https://strictly-typed-pandas.readthedocs.io/>`_.\n\nFAQ\n===\n\n| **Do you know of something similar for pyspark?**\n| Yes! Check out our package `typedspark <https://github.com/kaiko-ai/typedspark/>`_.\n|\n| **Why use Python if you want static typing?**\n| There are just so many good packages for data science in Python. Rather than sacrificing all of that by moving to a different language, I'd like to make the Pythonverse a little bit better.\n|\n| **I found a bug! What should I do?**\n| Great! Contact me and I'll look into it.\n|\n| **I have a great idea to improve strictly_typed_pandas! How can we make this work?**\n| Awesome, drop me a line!\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Static type checking of pandas DataFrames",
    "version": "0.3.5",
    "project_urls": {
        "Homepage": "https://github.com/nanne-aben/strictly_typed_pandas"
    },
    "split_keywords": [
        "typing",
        "type",
        "checking",
        "pandas",
        "mypy",
        "linting"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "55a1cbf0c2e9c0646da6e6c02e97cc1d2227ab5839f4ad3893f0224d2e059304",
                "md5": "e82091ad1d8057faa21f098e0baa2546",
                "sha256": "60c12e714bbb37fcc8ba9abc97b175bf0754586dc9b3ae566ab589f4070dfae0"
            },
            "downloads": -1,
            "filename": "strictly_typed_pandas-0.3.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e82091ad1d8057faa21f098e0baa2546",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8.0",
            "size": 25389,
            "upload_time": "2024-11-15T18:14:50",
            "upload_time_iso_8601": "2024-11-15T18:14:50.793751Z",
            "url": "https://files.pythonhosted.org/packages/55/a1/cbf0c2e9c0646da6e6c02e97cc1d2227ab5839f4ad3893f0224d2e059304/strictly_typed_pandas-0.3.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3b33bdbb81a51963119a4a96db29f36c4396636181287d96ab6130332ff32b09",
                "md5": "95eb6b5a502911cdd7c28b7e2eef3f14",
                "sha256": "6fc4a9dabf4c2fa9626de7cfe17967f6457458763b3bbbc8c832f88dc4161b08"
            },
            "downloads": -1,
            "filename": "strictly_typed_pandas-0.3.5.tar.gz",
            "has_sig": false,
            "md5_digest": "95eb6b5a502911cdd7c28b7e2eef3f14",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8.0",
            "size": 24444,
            "upload_time": "2024-11-15T18:14:51",
            "upload_time_iso_8601": "2024-11-15T18:14:51.771207Z",
            "url": "https://files.pythonhosted.org/packages/3b/33/bdbb81a51963119a4a96db29f36c4396636181287d96ab6130332ff32b09/strictly_typed_pandas-0.3.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-15 18:14:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nanne-aben",
    "github_project": "strictly_typed_pandas",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "strictly-typed-pandas"
}
        
Elapsed time: 0.40596s