# STUDIOLAB ML inference Package
# Install
- pip install studiolab-ml
# RUN
All input image type is PIL Image
## MLFT
```
from studiolab_ml import MLFT
mlft = MLFT()
out = mlft.predict(img, cat_id)
```
- result is same dict type as "get_attributes" in ML-API
## Pose Compo
```
from studiolab_ml import PoseCompo
pcp = PoseCompo()
out = pcp.predict(img)
```
- output examples
- outfit image - {'cut': 'outfit', 'background': 'blind', 'direction': 'front', 'head': 'head', 'part': 'full', 'pose': 'stand', 'detail': None}
- product image - {'cut': 'product', 'background': None, 'direction': 'front', 'head': None, 'part': None, 'pose': None, 'detail': None}
- detail image - {'cut': 'detail', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': [shoulder, sleeve, ..]}
- noise image - {'cut': 'noise', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': None}
## FIC
```
from studiolab_ml import PoseCompo
infer = FIC(api_key)
res = infer(attribute_dict, user_inputs_dict)
```
- input and result is same dict type as "get_gpt_content" in ML-API
# TODO
- create model cloud storage
- model download from cloud
- GPU inference
Raw data
{
"_id": null,
"home_page": "https://github.com/StudioLABdev/ML-inference-package",
"name": "studiolab-ml",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "",
"keywords": "STUDIOLAB,MLFT,PCP,PoseCompo,inference,ML,DL",
"author": "STUDIOLAB",
"author_email": "jaeseung.lim@studiolab.ai",
"download_url": "https://files.pythonhosted.org/packages/6a/ac/5c41860853787bef0b73704f2c11c19325ec8c06875d03550f3c761e52b8/studiolab_ml-0.1.1.tar.gz",
"platform": null,
"description": "# STUDIOLAB ML inference Package\n\n# Install\n- pip install studiolab-ml\n# RUN\nAll input image type is PIL Image \n## MLFT\n ```\nfrom studiolab_ml import MLFT\n\nmlft = MLFT()\nout = mlft.predict(img, cat_id)\n ```\n- result is same dict type as \"get_attributes\" in ML-API\n## Pose Compo\n```\nfrom studiolab_ml import PoseCompo\n\npcp = PoseCompo()\nout = pcp.predict(img)\n```\n- output examples\n - outfit image - {'cut': 'outfit', 'background': 'blind', 'direction': 'front', 'head': 'head', 'part': 'full', 'pose': 'stand', 'detail': None}\n - product image - {'cut': 'product', 'background': None, 'direction': 'front', 'head': None, 'part': None, 'pose': None, 'detail': None}\n - detail image - {'cut': 'detail', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': [shoulder, sleeve, ..]}\n - noise image - {'cut': 'noise', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': None}\n## FIC\n```\nfrom studiolab_ml import PoseCompo\n\ninfer = FIC(api_key)\nres = infer(attribute_dict, user_inputs_dict)\n```\n- input and result is same dict type as \"get_gpt_content\" in ML-API\n# TODO\n- create model cloud storage\n- model download from cloud\n- GPU inference\n",
"bugtrack_url": null,
"license": "GPL-3.0",
"summary": "STUDIOLAB ML inference Package",
"version": "0.1.1",
"project_urls": {
"Bug Reports": "https://github.com/StudioLABdev/ML-inference-package/issues",
"Homepage": "https://github.com/StudioLABdev/ML-inference-package",
"Source": "https://github.com/StudioLABdev/ML-inference-package"
},
"split_keywords": [
"studiolab",
"mlft",
"pcp",
"posecompo",
"inference",
"ml",
"dl"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7394eb50879c3a599f834ce76c6064ad36bdd38413c6ac46494657c193c8cc79",
"md5": "3108730942ff8b5d2bb2edbfd97f4ddd",
"sha256": "30a0d76d206e85cd0fb746ed324775d2cff5dcefd19d19e07cd209e0f3556380"
},
"downloads": -1,
"filename": "studiolab_ml-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3108730942ff8b5d2bb2edbfd97f4ddd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 47045,
"upload_time": "2023-11-07T06:15:01",
"upload_time_iso_8601": "2023-11-07T06:15:01.236274Z",
"url": "https://files.pythonhosted.org/packages/73/94/eb50879c3a599f834ce76c6064ad36bdd38413c6ac46494657c193c8cc79/studiolab_ml-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6aac5c41860853787bef0b73704f2c11c19325ec8c06875d03550f3c761e52b8",
"md5": "79af09d9f4350734f0df708e3306661c",
"sha256": "6afe3de1662d2ae763bb7cdfb9d929ed4a507cc59594dab1b67a0160e0222fdf"
},
"downloads": -1,
"filename": "studiolab_ml-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "79af09d9f4350734f0df708e3306661c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 35481,
"upload_time": "2023-11-07T06:15:03",
"upload_time_iso_8601": "2023-11-07T06:15:03.667463Z",
"url": "https://files.pythonhosted.org/packages/6a/ac/5c41860853787bef0b73704f2c11c19325ec8c06875d03550f3c761e52b8/studiolab_ml-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-07 06:15:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "StudioLABdev",
"github_project": "ML-inference-package",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "studiolab-ml"
}