# subsets - binary/box subsets & transforms
This package provides C++ implementation and Python bindings (SWIG) for dense binary/box multidimensional transformations.
Example of such transform is the TruthTable-to-AlgebraicNormalForm conversion (the Möbius transform), TruthTable-to-ParitySet conversion, Lower/UpperClosure with respect to the product partial order, etc. For more details, see Section 5 of the [Convexity of division property transitions](https://eprint.iacr.org/2021/1285) paper ([ASIACRYPT 2021](https://link.springer.com/chapter/10.1007/978-3-030-92062-3_12)).
Box here means a set of the shape $\\{0,\ldots,d_1\\} \times \\{0,\ldots,d_2\\} \times \ldots$.
## Installation
```bash
apt install swig g++ python3-dev # or any other package manager
pip install subsets
```
Note: the build can take a few minutes.
## Examples
Note: `subsets` uses [binteger](https://binteger.readthedocs.io/) for convenient representations of bit vectors.
See also [tests](tests/) for more examples.
### DenseSet
`DenseSet` stores a subset of $n$-bit vectors as a bitstring of $2^n$ bits.
```python
from subsets import DenseSet
# set of 3-bit vectors
b = DenseSet(3, [6, 7])
b
# <DenseSet hash=f502ae1f64521d04 n=3 wt=2 | 2:1 3:1>
list(b)
# [6, 7]
b.to_Bins()
# [Bin(0b110, n=3), Bin(0b111, n=3)]
b.Mobius().to_Bins()
# [Bin(0b110, n=3)] = x0x1
DenseSet(3, [3]).LowerSet().to_Bins()
# [Bin(0b000, n=3), Bin(0b001, n=3), Bin(0b010, n=3), Bin(0b011, n=3)]
DenseSet(3, [3]).LowerSet().MaxSet().to_Bins()
# [Bin(0b011, n=3)]
```
Bitwise operations such as `^,|,&` are supported naturally:
```python
from subsets import DenseSet
list(DenseSet(3, [0, 1]) ^ DenseSet(3, [1, 7]))
# [0, 7]
list(DenseSet(3, [0, 1, 2]).Complement())
# [3, 4, 5, 6, 7]
list(DenseSet(3, [0, 1, 2]).Not()) # equiv. to xor 0xfff... each index set
# [5, 6, 7]
list(DenseSet(3, [0, 1, 2]).Not(3)) # equiv. to xor 3 each index set
# [1, 2, 3]
```
### DenseBox
`DenseBox` stores a subset of a set $\\{0,\ldots,d_1\\} \times \\{0,\ldots,d_2\\} \times \ldots $
as a bitstring of length $ (d_1 + 1) \cdot (d_2 + 1) \cdot \ldots$.
It supports multidimensional transforsms similar to `DenseSet`.
Each element is addressed either by a list of integers from $\{0,\ldots,d_1\} \times \{0,\ldots,d_2\} \times \ldots$, or by a packed 64-bit integer.
```python
from subsets import DenseBox
d = DenseBox([2, 3, 4]) # dimensions
d.data.n
# 60 = 3*4*5 bits to stored d
d.set(d.pack([1, 0, 3]))
assert [1, 0, 3] in d
assert [0, 0, 0] not in d
d
# <DenseBox(2,3,4) hash=89366ea36f16f570 wt=1 | 4:1>
list(d.LowerSet())
# [0, 1, 2, 3, 20, 21, 22, 23]
d.LowerSet().get_unpacked()
# ((0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 0, 3))
```
In addition, `DenseBox` can be converted to and from `DenseSet` with $n = d_1 + d_2 + \ldots$:
the first produces set of bitstrings that have weight pattern $(\ell_1, \ell_2, \ldots)$ for each such pattern in the given `DenseBox` (expansion);
the second produces all weight patterns in a given `DenseSet` (compression):
```python
from subsets import DenseSet
d = DenseSet(4, [1, 2, 3, 12]).to_DenseBox([2, 2])
d.get_unpacked()
# ((0, 1), (0, 2), (2, 0))
```
**Caution:** a convex binary set may have a non-convex weight pattern bounds:
```python
from subsets import DenseSet
d = DenseSet(4, [7, 8])
d.to_Bins()
# [Bin(0b0111, n=4), Bin(0b1000, n=4)]
d == d.LowerSet() & d.UpperSet()
# True - is convex
db = d.to_DenseBox([4])
db
# <DenseBox(4) hash=ef70011e9740ac1c wt=2 | 1:1 3:1>
db.LowerSet() & db.UpperSet() # convex hull
# <DenseBox(4) hash=c3729f500963e25a wt=3 | 1:1 2:1 3:1>
db == db.LowerSet() & db.UpperSet()
# False - obviously non-convex
```
### Division Property Propagation Table
Basic implementation of the (reduced) DPPT computation algorithm (Section 5 of [ia.cr/2021/1285](https://ia.cr/2021/1285)).
```python
from subsets import DenseSet
sbox = [ # AES
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16
]
graph = DenseSet(16)
for x, y in enumerate(sbox):
graph.set((x << 8) | y)
# do_* does the operation in place
dppt = graph
dppt.do_ParitySet() # same as dppt.do_Sweep_XOR_down()
dppt.do_UpperSet(0xff00)
dppt.do_MinSet(0x00ff)
dppt.do_Not(0xff00)
[v.split(2) for v in dppt.to_Bins()]
# (Bin(0b00000000, n=8), Bin(0b00000000, n=8))
# (Bin(0b00000001, n=8), Bin(0b00000001, n=8))
# (Bin(0b00000001, n=8), Bin(0b00000010, n=8))
# (Bin(0b00000001, n=8), Bin(0b00000100, n=8))
# (Bin(0b00000001, n=8), Bin(0b00001000, n=8))
# (Bin(0b00000001, n=8), Bin(0b00010000, n=8))
# (Bin(0b00000001, n=8), Bin(0b00100000, n=8))
# (Bin(0b00000001, n=8), Bin(0b01000000, n=8))
# (Bin(0b00000001, n=8), Bin(0b10000000, n=8))
# (Bin(0b00000010, n=8), Bin(0b00000001, n=8))
# (Bin(0b00000010, n=8), Bin(0b00000010, n=8))
# (Bin(0b00000010, n=8), Bin(0b00000100, n=8))
# (Bin(0b00000010, n=8), Bin(0b00001000, n=8))
# ...
# (Bin(0b11111101, n=8), Bin(0b10000000, n=8))
# (Bin(0b11111110, n=8), Bin(0b00000100, n=8))
# (Bin(0b11111110, n=8), Bin(0b00001010, n=8))
# (Bin(0b11111110, n=8), Bin(0b00010010, n=8))
# (Bin(0b11111110, n=8), Bin(0b00011000, n=8))
# (Bin(0b11111110, n=8), Bin(0b00100001, n=8))
# (Bin(0b11111110, n=8), Bin(0b00101000, n=8))
# (Bin(0b11111110, n=8), Bin(0b00110000, n=8))
# (Bin(0b11111110, n=8), Bin(0b01000001, n=8))
# (Bin(0b11111110, n=8), Bin(0b01010000, n=8))
# (Bin(0b11111110, n=8), Bin(0b01100010, n=8))
# (Bin(0b11111110, n=8), Bin(0b10000001, n=8))
# (Bin(0b11111110, n=8), Bin(0b10010000, n=8))
# (Bin(0b11111111, n=8), Bin(0b11111111, n=8))
```
### Extra
Subsets can be stored to / loaded from files, and a command line tool to view information on such files is provided:
*note*: actually sparse DenseSet instances are stored sparsely in files (but densely in memory)
```bash
$ subsets.info -s data/sbox_aes/ddt.set
INFO:subsets.setinfo:data/sbox_aes/ddt.set: <DenseSet hash=3ab8d88c8de49448 n=16 wt=32386 | 0:1 2:24 3:212 4:855 5:2205 6:3901 7:5637 8:6378 9:5746 10:4007 11:2169 12:907 13:276 14:58 15:9 16:1>
$ subsets.info data/sbox_aes/ddt.set
INFO:subsets.setinfo:set file data/sbox_aes/ddt.set
INFO:subsets.setinfo:data/sbox_aes/ddt.set: <DenseSet hash=3ab8d88c8de49448 n=16 wt=32386 | 0:1 2:24 3:212 4:855 5:2205 6:3901 7:5637 8:6378 9:5746 10:4007 11:2169 12:907 13:276 14:58 15:9 16:1>
INFO:subsets.setinfo:stat by weights:
INFO:subsets.setinfo:0 : 1
INFO:subsets.setinfo:1 : 0
INFO:subsets.setinfo:2 : 24
INFO:subsets.setinfo:3 : 212
INFO:subsets.setinfo:4 : 855
INFO:subsets.setinfo:5 : 2205
INFO:subsets.setinfo:6 : 3901
INFO:subsets.setinfo:7 : 5637
INFO:subsets.setinfo:8 : 6378
INFO:subsets.setinfo:9 : 5746
INFO:subsets.setinfo:10 : 4007
INFO:subsets.setinfo:11 : 2169
INFO:subsets.setinfo:12 : 907
INFO:subsets.setinfo:13 : 276
INFO:subsets.setinfo:14 : 58
INFO:subsets.setinfo:15 : 9
INFO:subsets.setinfo:16 : 1
INFO:subsets.setinfo:stat by pairs:
INFO:subsets.setinfo:0 0 : 1
INFO:subsets.setinfo:1 1 : 24
INFO:subsets.setinfo:1 2 : 102
INFO:subsets.setinfo:1 3 : 234
...
INFO:subsets.setinfo:8 6 : 14
INFO:subsets.setinfo:8 7 : 5
INFO:subsets.setinfo:8 8 : 1
INFO:subsets.setinfo:
```
## License: MIT
Raw data
{
"_id": null,
"home_page": null,
"name": "subsets",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "subsets, binary, ternary, multidimensional transforms, cryptanalysis, cryptography",
"author": null,
"author_email": "Aleksei Udovenko <aleksei@affine.group>",
"download_url": "https://files.pythonhosted.org/packages/fd/db/343dd48070176f8fc608a90388a3864ab5b258caf31e2436b2a1f12a4984/subsets-1.1.2.tar.gz",
"platform": null,
"description": "# subsets - binary/box subsets & transforms\n\nThis package provides C++ implementation and Python bindings (SWIG) for dense binary/box multidimensional transformations.\n\nExample of such transform is the TruthTable-to-AlgebraicNormalForm conversion (the M\u00f6bius transform), TruthTable-to-ParitySet conversion, Lower/UpperClosure with respect to the product partial order, etc. For more details, see Section 5 of the [Convexity of division property transitions](https://eprint.iacr.org/2021/1285) paper ([ASIACRYPT 2021](https://link.springer.com/chapter/10.1007/978-3-030-92062-3_12)).\n\nBox here means a set of the shape $\\\\{0,\\ldots,d_1\\\\} \\times \\\\{0,\\ldots,d_2\\\\} \\times \\ldots$.\n\n\n## Installation\n\n```bash\napt install swig g++ python3-dev # or any other package manager\npip install subsets\n```\n\nNote: the build can take a few minutes.\n\n\n## Examples\n\nNote: `subsets` uses [binteger](https://binteger.readthedocs.io/) for convenient representations of bit vectors.\n\nSee also [tests](tests/) for more examples.\n\n\n### DenseSet\n\n`DenseSet` stores a subset of $n$-bit vectors as a bitstring of $2^n$ bits. \n\n```python\nfrom subsets import DenseSet\n\n# set of 3-bit vectors\nb = DenseSet(3, [6, 7]) \nb\n# <DenseSet hash=f502ae1f64521d04 n=3 wt=2 | 2:1 3:1>\n\nlist(b)\n# [6, 7]\n\nb.to_Bins()\n# [Bin(0b110, n=3), Bin(0b111, n=3)]\n\nb.Mobius().to_Bins()\n# [Bin(0b110, n=3)] = x0x1\n\nDenseSet(3, [3]).LowerSet().to_Bins()\n# [Bin(0b000, n=3), Bin(0b001, n=3), Bin(0b010, n=3), Bin(0b011, n=3)]\n\nDenseSet(3, [3]).LowerSet().MaxSet().to_Bins()\n# [Bin(0b011, n=3)]\n```\n\nBitwise operations such as `^,|,&` are supported naturally:\n\n```python\nfrom subsets import DenseSet\n\nlist(DenseSet(3, [0, 1]) ^ DenseSet(3, [1, 7]))\n# [0, 7]\n\nlist(DenseSet(3, [0, 1, 2]).Complement())\n# [3, 4, 5, 6, 7]\n\nlist(DenseSet(3, [0, 1, 2]).Not()) # equiv. to xor 0xfff... each index set\n# [5, 6, 7]\n\nlist(DenseSet(3, [0, 1, 2]).Not(3)) # equiv. to xor 3 each index set\n# [1, 2, 3]\n```\n\n### DenseBox\n\n`DenseBox` stores a subset of a set $\\\\{0,\\ldots,d_1\\\\} \\times \\\\{0,\\ldots,d_2\\\\} \\times \\ldots $\nas a bitstring of length $ (d_1 + 1) \\cdot (d_2 + 1) \\cdot \\ldots$.\nIt supports multidimensional transforsms similar to `DenseSet`.\n\nEach element is addressed either by a list of integers from $\\{0,\\ldots,d_1\\} \\times \\{0,\\ldots,d_2\\} \\times \\ldots$, or by a packed 64-bit integer.\n\n```python\nfrom subsets import DenseBox\n\nd = DenseBox([2, 3, 4]) # dimensions\nd.data.n\n# 60 = 3*4*5 bits to stored d\n\nd.set(d.pack([1, 0, 3]))\nassert [1, 0, 3] in d\nassert [0, 0, 0] not in d\n\nd\n# <DenseBox(2,3,4) hash=89366ea36f16f570 wt=1 | 4:1>\n\nlist(d.LowerSet())\n# [0, 1, 2, 3, 20, 21, 22, 23]\n\nd.LowerSet().get_unpacked()\n# ((0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 0, 3))\n```\n\nIn addition, `DenseBox` can be converted to and from `DenseSet` with $n = d_1 + d_2 + \\ldots$:\nthe first produces set of bitstrings that have weight pattern $(\\ell_1, \\ell_2, \\ldots)$ for each such pattern in the given `DenseBox` (expansion);\nthe second produces all weight patterns in a given `DenseSet` (compression):\n\n```python\nfrom subsets import DenseSet\n\nd = DenseSet(4, [1, 2, 3, 12]).to_DenseBox([2, 2])\n\nd.get_unpacked()\n# ((0, 1), (0, 2), (2, 0))\n```\n\n**Caution:** a convex binary set may have a non-convex weight pattern bounds:\n\n```python\nfrom subsets import DenseSet\n\nd = DenseSet(4, [7, 8])\nd.to_Bins()\n# [Bin(0b0111, n=4), Bin(0b1000, n=4)]\n\nd == d.LowerSet() & d.UpperSet()\n# True - is convex\n\ndb = d.to_DenseBox([4])\ndb\n# <DenseBox(4) hash=ef70011e9740ac1c wt=2 | 1:1 3:1>\n\ndb.LowerSet() & db.UpperSet() # convex hull\n# <DenseBox(4) hash=c3729f500963e25a wt=3 | 1:1 2:1 3:1>\n\ndb == db.LowerSet() & db.UpperSet()\n# False - obviously non-convex\n```\n\n### Division Property Propagation Table\n\nBasic implementation of the (reduced) DPPT computation algorithm (Section 5 of [ia.cr/2021/1285](https://ia.cr/2021/1285)).\n\n```python\nfrom subsets import DenseSet\n\nsbox = [ # AES\n 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,\n 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,\n 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,\n 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,\n 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,\n 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,\n 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,\n 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,\n 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,\n 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,\n 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,\n 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,\n 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,\n 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,\n 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,\n 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16\n]\n\ngraph = DenseSet(16)\nfor x, y in enumerate(sbox):\n graph.set((x << 8) | y)\n\n# do_* does the operation in place\ndppt = graph\ndppt.do_ParitySet() # same as dppt.do_Sweep_XOR_down()\ndppt.do_UpperSet(0xff00)\ndppt.do_MinSet(0x00ff)\ndppt.do_Not(0xff00)\n\n[v.split(2) for v in dppt.to_Bins()]\n# (Bin(0b00000000, n=8), Bin(0b00000000, n=8))\n# (Bin(0b00000001, n=8), Bin(0b00000001, n=8))\n# (Bin(0b00000001, n=8), Bin(0b00000010, n=8))\n# (Bin(0b00000001, n=8), Bin(0b00000100, n=8))\n# (Bin(0b00000001, n=8), Bin(0b00001000, n=8))\n# (Bin(0b00000001, n=8), Bin(0b00010000, n=8))\n# (Bin(0b00000001, n=8), Bin(0b00100000, n=8))\n# (Bin(0b00000001, n=8), Bin(0b01000000, n=8))\n# (Bin(0b00000001, n=8), Bin(0b10000000, n=8))\n# (Bin(0b00000010, n=8), Bin(0b00000001, n=8))\n# (Bin(0b00000010, n=8), Bin(0b00000010, n=8))\n# (Bin(0b00000010, n=8), Bin(0b00000100, n=8))\n# (Bin(0b00000010, n=8), Bin(0b00001000, n=8))\n# ...\n# (Bin(0b11111101, n=8), Bin(0b10000000, n=8))\n# (Bin(0b11111110, n=8), Bin(0b00000100, n=8))\n# (Bin(0b11111110, n=8), Bin(0b00001010, n=8))\n# (Bin(0b11111110, n=8), Bin(0b00010010, n=8))\n# (Bin(0b11111110, n=8), Bin(0b00011000, n=8))\n# (Bin(0b11111110, n=8), Bin(0b00100001, n=8))\n# (Bin(0b11111110, n=8), Bin(0b00101000, n=8))\n# (Bin(0b11111110, n=8), Bin(0b00110000, n=8))\n# (Bin(0b11111110, n=8), Bin(0b01000001, n=8))\n# (Bin(0b11111110, n=8), Bin(0b01010000, n=8))\n# (Bin(0b11111110, n=8), Bin(0b01100010, n=8))\n# (Bin(0b11111110, n=8), Bin(0b10000001, n=8))\n# (Bin(0b11111110, n=8), Bin(0b10010000, n=8))\n# (Bin(0b11111111, n=8), Bin(0b11111111, n=8))\n```\n\n### Extra\n\nSubsets can be stored to / loaded from files, and a command line tool to view information on such files is provided:\n\n*note*: actually sparse DenseSet instances are stored sparsely in files (but densely in memory)\n\n```bash\n$ subsets.info -s data/sbox_aes/ddt.set\nINFO:subsets.setinfo:data/sbox_aes/ddt.set: <DenseSet hash=3ab8d88c8de49448 n=16 wt=32386 | 0:1 2:24 3:212 4:855 5:2205 6:3901 7:5637 8:6378 9:5746 10:4007 11:2169 12:907 13:276 14:58 15:9 16:1>\n\n$ subsets.info data/sbox_aes/ddt.set\nINFO:subsets.setinfo:set file data/sbox_aes/ddt.set\nINFO:subsets.setinfo:data/sbox_aes/ddt.set: <DenseSet hash=3ab8d88c8de49448 n=16 wt=32386 | 0:1 2:24 3:212 4:855 5:2205 6:3901 7:5637 8:6378 9:5746 10:4007 11:2169 12:907 13:276 14:58 15:9 16:1>\nINFO:subsets.setinfo:stat by weights:\nINFO:subsets.setinfo:0 : 1\nINFO:subsets.setinfo:1 : 0\nINFO:subsets.setinfo:2 : 24\nINFO:subsets.setinfo:3 : 212\nINFO:subsets.setinfo:4 : 855\nINFO:subsets.setinfo:5 : 2205\nINFO:subsets.setinfo:6 : 3901\nINFO:subsets.setinfo:7 : 5637\nINFO:subsets.setinfo:8 : 6378\nINFO:subsets.setinfo:9 : 5746\nINFO:subsets.setinfo:10 : 4007\nINFO:subsets.setinfo:11 : 2169\nINFO:subsets.setinfo:12 : 907\nINFO:subsets.setinfo:13 : 276\nINFO:subsets.setinfo:14 : 58\nINFO:subsets.setinfo:15 : 9\nINFO:subsets.setinfo:16 : 1\nINFO:subsets.setinfo:stat by pairs:\nINFO:subsets.setinfo:0 0 : 1\nINFO:subsets.setinfo:1 1 : 24\nINFO:subsets.setinfo:1 2 : 102\nINFO:subsets.setinfo:1 3 : 234\n...\nINFO:subsets.setinfo:8 6 : 14\nINFO:subsets.setinfo:8 7 : 5\nINFO:subsets.setinfo:8 8 : 1\nINFO:subsets.setinfo:\n```\n\n\n## License: MIT\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Tools for cryptanalysis (subsets & transforms)",
"version": "1.1.2",
"project_urls": {
"Repository": "https://github.com/hellman/subsets"
},
"split_keywords": [
"subsets",
" binary",
" ternary",
" multidimensional transforms",
" cryptanalysis",
" cryptography"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fddb343dd48070176f8fc608a90388a3864ab5b258caf31e2436b2a1f12a4984",
"md5": "03c521a4fdfd96266fd38875b637ef27",
"sha256": "7db34cd11811772d00a9ed7e29f69adf524161d1ef911e2b8a2389fc81abe49e"
},
"downloads": -1,
"filename": "subsets-1.1.2.tar.gz",
"has_sig": false,
"md5_digest": "03c521a4fdfd96266fd38875b637ef27",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 36119,
"upload_time": "2024-07-02T16:53:56",
"upload_time_iso_8601": "2024-07-02T16:53:56.329598Z",
"url": "https://files.pythonhosted.org/packages/fd/db/343dd48070176f8fc608a90388a3864ab5b258caf31e2436b2a1f12a4984/subsets-1.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-02 16:53:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hellman",
"github_project": "subsets",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "subsets"
}