summer-search


Namesummer-search JSON
Version 0.0.4 PyPI version JSON
download
home_page
SummarySearch and summarize the web with ease!
upload_time2023-11-12 10:27:17
maintainer
docs_urlNone
authorCozmic (Hem Sainath)
requires_python
license
keywords python search summerisation summary ml information
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Summer Search



**summer-search** is a Python package that provides a simple interface for searching the web, extracting relevant content, and generating a summary based on the extracted information. The package leverages popular libraries such as `requests`, `BeautifulSoup`, and `transformers` to achieve its functionality.



## Installation



You can install the package using pip:



```cmd

pip install summer-search

```





### Requirements:



- **bs4 (Beautiful Soup 4):**

- **requests:**

- **transformers:**

- **sentencepiece:**

- **tensorflow:**

- **torch:**

> checkout the [requirements.txt](https://github.com/Cozmeh/SummerSearch/blob/main/requirements.txt)

  ```bash

   pip install -r requirements.txt

  ```

  



Make sure to install these dependencies before using the `summer-search` package to ensure all the required libraries are available.



## Usage



```python

from SummerSearch import summerSearch



# Create an instance

searcher = summerSearch()

print("Ready to search and summarize!")



# Perform a search

while True:



    # query to search 

    search_query = input("Enter a search query: ")

    raw_paragraph = searcher.search(search_query=search_query,filter="fixed_index",filter_value=1)

    print("Generating summary...")



    #specifying the model

    model = "t5-small"



    #summerization

    result = searcher.summarize(raw_paragraph, model)



    # Print the results

    print("\nSearch Query:", result["search_query"])

    print("\nSummary:", result["summary"])

    print("\nReference Link:", result["reference"])

    print("\nLearn More Links:", result["learn_more"])

    print("\nAdditional Links:", result["all_links"])

```



## Documentation



- `summerSearch` Class



#### Methods



- `search(search_query, filter="accuracy", filter_value=2)`: Performs a search and returns the raw paragraph.

  - `search_query`: The user's search query.

  - `filter`: Filtering option ("accuracy" or "fixed_index").

  - `filter_value`: Value based on the selected filter (default is 2).



- `summarize(raw_paragraph, model)`: Summarizes the raw paragraph using a specified model.

  - `raw_paragraph`: The raw text to be summarized.

  - `model`: The summarization model to use.

 



## Summarization Models



The `summerSearch` class supports the following summarization models:



- **t5-small**: A small variant of the T5 (Text-to-Text Transfer Transformer) model for general and basic summaries.



- **facebook/bart-large-cnn**: The BART (BART: Denoising Sequence-to-Sequence Pre-training) model, specifically the large CNN variant, for general and more proper summaries.



- **kabita-choudhary/finetuned-bart-for-conversation-summary**: A fine-tuned BART model for conversation summaries.





Feel free to choose the model that best fits your requirements and experiment with different models to observe variations in summarization results.



## Notes

Feel free to explore and experiment with the package

- You can always contribute to the package!

- The package uses a combination of web scraping and summarization techniques to provide relevant information based on the user's search query.

- The `filter` and `filter_value` parameters in the `search` method allow users to customize the search process based on accuracy or a fixed index.

- The `summarize` method utilizes the Hugging Face Transformers library for text summarization.


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "summer-search",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,search,summerisation,summary,ml,information",
    "author": "Cozmic (Hem Sainath)",
    "author_email": "hemsainath15@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/bc/1c/051e83fcdef9ae98c9a228693d018bb42ba4467ea9ff8bdcd76edc4350cf/summer-search-0.0.4.tar.gz",
    "platform": null,
    "description": "\r\n# Summer Search\r\n\r\n\r\n\r\n**summer-search** is a Python package that provides a simple interface for searching the web, extracting relevant content, and generating a summary based on the extracted information. The package leverages popular libraries such as `requests`, `BeautifulSoup`, and `transformers` to achieve its functionality.\r\n\r\n\r\n\r\n## Installation\r\n\r\n\r\n\r\nYou can install the package using pip:\r\n\r\n\r\n\r\n```cmd\r\n\r\npip install summer-search\r\n\r\n```\r\n\r\n\r\n\r\n\r\n\r\n### Requirements:\r\n\r\n\r\n\r\n- **bs4 (Beautiful Soup 4):**\r\n\r\n- **requests:**\r\n\r\n- **transformers:**\r\n\r\n- **sentencepiece:**\r\n\r\n- **tensorflow:**\r\n\r\n- **torch:**\r\n\r\n> checkout the [requirements.txt](https://github.com/Cozmeh/SummerSearch/blob/main/requirements.txt)\r\n\r\n  ```bash\r\n\r\n   pip install -r requirements.txt\r\n\r\n  ```\r\n\r\n  \r\n\r\n\r\n\r\nMake sure to install these dependencies before using the `summer-search` package to ensure all the required libraries are available.\r\n\r\n\r\n\r\n## Usage\r\n\r\n\r\n\r\n```python\r\n\r\nfrom SummerSearch import summerSearch\r\n\r\n\r\n\r\n# Create an instance\r\n\r\nsearcher = summerSearch()\r\n\r\nprint(\"Ready to search and summarize!\")\r\n\r\n\r\n\r\n# Perform a search\r\n\r\nwhile True:\r\n\r\n\r\n\r\n    # query to search \r\n\r\n    search_query = input(\"Enter a search query: \")\r\n\r\n    raw_paragraph = searcher.search(search_query=search_query,filter=\"fixed_index\",filter_value=1)\r\n\r\n    print(\"Generating summary...\")\r\n\r\n\r\n\r\n    #specifying the model\r\n\r\n    model = \"t5-small\"\r\n\r\n\r\n\r\n    #summerization\r\n\r\n    result = searcher.summarize(raw_paragraph, model)\r\n\r\n\r\n\r\n    # Print the results\r\n\r\n    print(\"\\nSearch Query:\", result[\"search_query\"])\r\n\r\n    print(\"\\nSummary:\", result[\"summary\"])\r\n\r\n    print(\"\\nReference Link:\", result[\"reference\"])\r\n\r\n    print(\"\\nLearn More Links:\", result[\"learn_more\"])\r\n\r\n    print(\"\\nAdditional Links:\", result[\"all_links\"])\r\n\r\n```\r\n\r\n\r\n\r\n## Documentation\r\n\r\n\r\n\r\n- `summerSearch` Class\r\n\r\n\r\n\r\n#### Methods\r\n\r\n\r\n\r\n- `search(search_query, filter=\"accuracy\", filter_value=2)`: Performs a search and returns the raw paragraph.\r\n\r\n  - `search_query`: The user's search query.\r\n\r\n  - `filter`: Filtering option (\"accuracy\" or \"fixed_index\").\r\n\r\n  - `filter_value`: Value based on the selected filter (default is 2).\r\n\r\n\r\n\r\n- `summarize(raw_paragraph, model)`: Summarizes the raw paragraph using a specified model.\r\n\r\n  - `raw_paragraph`: The raw text to be summarized.\r\n\r\n  - `model`: The summarization model to use.\r\n\r\n \r\n\r\n\r\n\r\n## Summarization Models\r\n\r\n\r\n\r\nThe `summerSearch` class supports the following summarization models:\r\n\r\n\r\n\r\n- **t5-small**: A small variant of the T5 (Text-to-Text Transfer Transformer) model for general and basic summaries.\r\n\r\n\r\n\r\n- **facebook/bart-large-cnn**: The BART (BART: Denoising Sequence-to-Sequence Pre-training) model, specifically the large CNN variant, for general and more proper summaries.\r\n\r\n\r\n\r\n- **kabita-choudhary/finetuned-bart-for-conversation-summary**: A fine-tuned BART model for conversation summaries.\r\n\r\n\r\n\r\n\r\n\r\nFeel free to choose the model that best fits your requirements and experiment with different models to observe variations in summarization results.\r\n\r\n\r\n\r\n## Notes\r\n\r\nFeel free to explore and experiment with the package\r\n\r\n- You can always contribute to the package!\r\n\r\n- The package uses a combination of web scraping and summarization techniques to provide relevant information based on the user's search query.\r\n\r\n- The `filter` and `filter_value` parameters in the `search` method allow users to customize the search process based on accuracy or a fixed index.\r\n\r\n- The `summarize` method utilizes the Hugging Face Transformers library for text summarization.\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Search and summarize the web with ease!",
    "version": "0.0.4",
    "project_urls": null,
    "split_keywords": [
        "python",
        "search",
        "summerisation",
        "summary",
        "ml",
        "information"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "053cee2a5ea52a3e75daa9db601e0dc4269edaac90b876c82ec62e2757748cc2",
                "md5": "acb037ee22b81ccfe777f8cac410bcca",
                "sha256": "f4bb518d8b1ea61f2d6d90fd0e5642cf1aa18f0cfc5e7d56de048b633e7e2386"
            },
            "downloads": -1,
            "filename": "summer_search-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "acb037ee22b81ccfe777f8cac410bcca",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4691,
            "upload_time": "2023-11-12T10:27:15",
            "upload_time_iso_8601": "2023-11-12T10:27:15.734306Z",
            "url": "https://files.pythonhosted.org/packages/05/3c/ee2a5ea52a3e75daa9db601e0dc4269edaac90b876c82ec62e2757748cc2/summer_search-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bc1c051e83fcdef9ae98c9a228693d018bb42ba4467ea9ff8bdcd76edc4350cf",
                "md5": "4e118737e98ca5e219cc977489f58577",
                "sha256": "ff022ed9ab4d822c794ae0a344be2b74f06c10ce54b2c65712416b68072d3c12"
            },
            "downloads": -1,
            "filename": "summer-search-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "4e118737e98ca5e219cc977489f58577",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4721,
            "upload_time": "2023-11-12T10:27:17",
            "upload_time_iso_8601": "2023-11-12T10:27:17.348224Z",
            "url": "https://files.pythonhosted.org/packages/bc/1c/051e83fcdef9ae98c9a228693d018bb42ba4467ea9ff8bdcd76edc4350cf/summer-search-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-12 10:27:17",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "summer-search"
}
        
Elapsed time: 0.16472s