superneuromat


Namesuperneuromat JSON
Version 3.2.1 PyPI version JSON
download
home_pageNone
SummaryA fast and scalable matrix-based simulator for Spiking Neural Networks (SNNs).
upload_time2025-07-14 16:48:35
maintainerNone
docs_urlNone
authorChathika Gunaratne, Shruti Kulkarni, Robert Patton, Mark Coletti
requires_python>=3.9
licenseNone
keywords fast neuromorphic simulator matrix-based neuromorphic simulator neuromorphic algorithms neuromorphic computing neuromorphic simulator numpy neuromorphic simulator
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center" style="text-align: center;">
<picture>
  <source media="(prefers-color-scheme: dark)" srcset="./docs/source/_static/superneuro-pcg-arrow-dark-tag.svg">
  <img alt="SuperNeuroMAT Logo" src="./docs/source/_static/superneuro-pcg-arrow-blue-tag.svg" width='600rem'>
</picture>
</div>

# SuperNeuroMAT

### The Super Speedy Spike Simulator.

SuperNeuroMAT is a Python package for simulating and analyzing spiking neural networks.

[![Tox: Selected Tests](https://github.com/ORNL/superneuromat/actions/workflows/test.yaml/badge.svg)](https://github.com/ORNL/superneuromat/actions/workflows/test.yaml)
[![Sphinx: Build HTML](https://github.com/ORNL/superneuromat/actions/workflows/pages-build.yaml/badge.svg)](https://github.com/ORNL/superneuromat/actions/workflows/pages-build.yaml)
[![Build & Upload Python Package](https://github.com/ORNL/superneuromat/actions/workflows/pypi-release.yml/badge.svg)](https://github.com/ORNL/superneuromat/actions/workflows/pypi-release.yml)

Documentation available: https://ORNL.github.io/superneuromat/

[<img src="https://gist.githubusercontent.com/cxmeel/0dbc95191f239b631c3874f4ccf114e2/raw/documentation.svg" alt="Documentation" height="40" />](https://ORNL.github.io/superneuromat/)

Unlike its sister package, [SuperNeuroABM](https://github.com/ORNL/superneuroabm), SuperNeuroMAT uses a matrix-based representation
of the network, which allows for more efficient simulation and GPU acceleration.

SuperNeuroMAT focuses on super-fast computation of Leaky Integrate and Fire **(LIF)** spiking neuron models with STDP.

It provides:
1. Support for leaky integrate and fire neuron model with the following parameters:
  * neuron threshold
  * neuron leak
  * neuron refractory period
2. Support for Spiking-Time-Dependent Plasticity (STDP) on synapses with:
  * weight
  * delay
  * per-synapse disabling of learning
3. Support for all-to-all connections as well as self connections
4. A turing-complete model of neuromorphic computing
5. Optional GPU acceleration or Optional Sparse computation

* Note that long delays may impact performance. Consider using an agent-based simulator
such as [SuperNeuroABM](https://github.com/ORNL/superneuroabm) for longer delays.


## Installation
1. Install using `pip install superneuromat`
2. Update/upgrade using `pip install superneuromat --upgrade`

The [installation guide](https://ORNL.github.io/superneuromat/guide/install.html)
covers virtual environments, faster installation with uv, installing support for CUDA GPU acceleration, and more.

## Usage
Import the spiking neural network class: 

```python
from superneuromat import SNN
```

See the [tutorial](https://ORNL.github.io/superneuromat/guide/firstrun.html) for more.

Additionally, the [migration guide](https://ornl.github.io/superneuromat/guide/migration2.html) may be of use to those coming from older versions of SuperNeuroMAT.

## Citation
1. Please cite SuperNeuroMAT using:
	```
	@inproceedings{date2023superneuro,
	  title={SuperNeuro: A fast and scalable simulator for neuromorphic computing},
	  author={Date, Prasanna and Gunaratne, Chathika and R. Kulkarni, Shruti and Patton, Robert and Coletti, Mark and Potok, Thomas},
	  booktitle={Proceedings of the 2023 International Conference on Neuromorphic Systems},
	  pages={1--4},
	  year={2023}
	}
	```
2. References for SuperNeuroMAT:
	- [SuperNeuro: A Fast and Scalable Simulator for Neuromorphic Computing](https://dl.acm.org/doi/abs/10.1145/3589737.3606000)
	- [Neuromorphic Computing is Turing-Complete](https://dl.acm.org/doi/abs/10.1145/3546790.3546806)
	- [Computational Complexity of Neuromorphic Algorithms](https://dl.acm.org/doi/abs/10.1145/3477145.3477154)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "superneuromat",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "Prasanna Date <datepa@ornl.gov>",
    "keywords": "Fast Neuromorphic Simulator, Matrix-Based Neuromorphic Simulator, Neuromorphic Algorithms, Neuromorphic Computing, Neuromorphic Simulator, Numpy Neuromorphic Simulator",
    "author": "Chathika Gunaratne, Shruti Kulkarni, Robert Patton, Mark Coletti",
    "author_email": "Prasanna Date <datepa@ornl.gov>",
    "download_url": "https://files.pythonhosted.org/packages/d6/b8/3e969b5c00e5435dd29a5c3c2ad562c33633c694862bf2c96845266a8fea/superneuromat-3.2.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\" style=\"text-align: center;\">\n<picture>\n  <source media=\"(prefers-color-scheme: dark)\" srcset=\"./docs/source/_static/superneuro-pcg-arrow-dark-tag.svg\">\n  <img alt=\"SuperNeuroMAT Logo\" src=\"./docs/source/_static/superneuro-pcg-arrow-blue-tag.svg\" width='600rem'>\n</picture>\n</div>\n\n# SuperNeuroMAT\n\n### The Super Speedy Spike Simulator.\n\nSuperNeuroMAT is a Python package for simulating and analyzing spiking neural networks.\n\n[![Tox: Selected Tests](https://github.com/ORNL/superneuromat/actions/workflows/test.yaml/badge.svg)](https://github.com/ORNL/superneuromat/actions/workflows/test.yaml)\n[![Sphinx: Build HTML](https://github.com/ORNL/superneuromat/actions/workflows/pages-build.yaml/badge.svg)](https://github.com/ORNL/superneuromat/actions/workflows/pages-build.yaml)\n[![Build & Upload Python Package](https://github.com/ORNL/superneuromat/actions/workflows/pypi-release.yml/badge.svg)](https://github.com/ORNL/superneuromat/actions/workflows/pypi-release.yml)\n\nDocumentation available: https://ORNL.github.io/superneuromat/\n\n[<img src=\"https://gist.githubusercontent.com/cxmeel/0dbc95191f239b631c3874f4ccf114e2/raw/documentation.svg\" alt=\"Documentation\" height=\"40\" />](https://ORNL.github.io/superneuromat/)\n\nUnlike its sister package, [SuperNeuroABM](https://github.com/ORNL/superneuroabm), SuperNeuroMAT uses a matrix-based representation\nof the network, which allows for more efficient simulation and GPU acceleration.\n\nSuperNeuroMAT focuses on super-fast computation of Leaky Integrate and Fire **(LIF)** spiking neuron models with STDP.\n\nIt provides:\n1. Support for leaky integrate and fire neuron model with the following parameters:\n  * neuron threshold\n  * neuron leak\n  * neuron refractory period\n2. Support for Spiking-Time-Dependent Plasticity (STDP) on synapses with:\n  * weight\n  * delay\n  * per-synapse disabling of learning\n3. Support for all-to-all connections as well as self connections\n4. A turing-complete model of neuromorphic computing\n5. Optional GPU acceleration or Optional Sparse computation\n\n* Note that long delays may impact performance. Consider using an agent-based simulator\nsuch as [SuperNeuroABM](https://github.com/ORNL/superneuroabm) for longer delays.\n\n\n## Installation\n1. Install using `pip install superneuromat`\n2. Update/upgrade using `pip install superneuromat --upgrade`\n\nThe [installation guide](https://ORNL.github.io/superneuromat/guide/install.html)\ncovers virtual environments, faster installation with uv, installing support for CUDA GPU acceleration, and more.\n\n## Usage\nImport the spiking neural network class: \n\n```python\nfrom superneuromat import SNN\n```\n\nSee the [tutorial](https://ORNL.github.io/superneuromat/guide/firstrun.html) for more.\n\nAdditionally, the [migration guide](https://ornl.github.io/superneuromat/guide/migration2.html) may be of use to those coming from older versions of SuperNeuroMAT.\n\n## Citation\n1. Please cite SuperNeuroMAT using:\n\t```\n\t@inproceedings{date2023superneuro,\n\t  title={SuperNeuro: A fast and scalable simulator for neuromorphic computing},\n\t  author={Date, Prasanna and Gunaratne, Chathika and R. Kulkarni, Shruti and Patton, Robert and Coletti, Mark and Potok, Thomas},\n\t  booktitle={Proceedings of the 2023 International Conference on Neuromorphic Systems},\n\t  pages={1--4},\n\t  year={2023}\n\t}\n\t```\n2. References for SuperNeuroMAT:\n\t- [SuperNeuro: A Fast and Scalable Simulator for Neuromorphic Computing](https://dl.acm.org/doi/abs/10.1145/3589737.3606000)\n\t- [Neuromorphic Computing is Turing-Complete](https://dl.acm.org/doi/abs/10.1145/3546790.3546806)\n\t- [Computational Complexity of Neuromorphic Algorithms](https://dl.acm.org/doi/abs/10.1145/3477145.3477154)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A fast and scalable matrix-based simulator for Spiking Neural Networks (SNNs).",
    "version": "3.2.1",
    "project_urls": {
        "Download": "https://pypi.org/project/ini2toml/#files",
        "Repository": "https://github.com/ORNL/superneuromat",
        "url": "https://github.com/ORNL/superneuromat"
    },
    "split_keywords": [
        "fast neuromorphic simulator",
        " matrix-based neuromorphic simulator",
        " neuromorphic algorithms",
        " neuromorphic computing",
        " neuromorphic simulator",
        " numpy neuromorphic simulator"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0f683041fd5f0da334c4de0e00d6ffc0546460bbec75fab4572a0448e58d60b0",
                "md5": "ddbec8d368d18715b2cda33f196c772d",
                "sha256": "cc61e2a912a0b456899527a50c0aee2b58420b34717b1cb22ddbbd5f2a2ffec7"
            },
            "downloads": -1,
            "filename": "superneuromat-3.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ddbec8d368d18715b2cda33f196c772d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 39887,
            "upload_time": "2025-07-14T16:48:33",
            "upload_time_iso_8601": "2025-07-14T16:48:33.567582Z",
            "url": "https://files.pythonhosted.org/packages/0f/68/3041fd5f0da334c4de0e00d6ffc0546460bbec75fab4572a0448e58d60b0/superneuromat-3.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d6b83e969b5c00e5435dd29a5c3c2ad562c33633c694862bf2c96845266a8fea",
                "md5": "15e5ba2d02ce406d6725cd4e1170f0fb",
                "sha256": "8131bcc7c5eab095f696dc3f6dbf4975f33b58b20d9daa642cd46116e2fff2ca"
            },
            "downloads": -1,
            "filename": "superneuromat-3.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "15e5ba2d02ce406d6725cd4e1170f0fb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 173322,
            "upload_time": "2025-07-14T16:48:35",
            "upload_time_iso_8601": "2025-07-14T16:48:35.280825Z",
            "url": "https://files.pythonhosted.org/packages/d6/b8/3e969b5c00e5435dd29a5c3c2ad562c33633c694862bf2c96845266a8fea/superneuromat-3.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-14 16:48:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ORNL",
    "github_project": "superneuromat",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "superneuromat"
}
        
Elapsed time: 0.82876s