superquantx


Namesuperquantx JSON
Version 0.1.2 PyPI version JSON
download
home_pageNone
SummaryQuantum AI Research Platform - Unified API for QuantumAgentic AIsystems research
upload_time2025-09-11 22:36:28
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseApache-2.0
keywords agentic-ai braket cirq experimental pennylane qiskit quantum-agents quantum-algorithms quantum-computing quantum-machine-learning research-platform unified-api
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI - Version](https://img.shields.io/pypi/v/superquantx)](https://pypi.org/project/superquantx/)
[![Python Version](https://img.shields.io/pypi/pyversions/superquantx)](https://pypi.org/project/superquantx/)
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Tests](https://github.com/SuperagenticAI/superquantx/workflows/Tests/badge.svg)](https://github.com/SuperagenticAI/superquantx/actions)
[![Documentation](https://img.shields.io/badge/docs-mkdocs-blue)](https://superagenticai.github.io/superquantx)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)

# SuperQuantX
### The foundation for the future of Agentic and Quantum AI
SuperQuantX unified API for the next wave of Quantum AI. It's a foundation to build powerful Quantum Agentic AI systems with a single interface to Qiskit, Cirq, PennyLane, and more. SuperQuantX is your launchpad into the world of Quantum + Agentic AI.

**Unified Quantum Computing Platform - Building autonomous quantum-enhanced AI systems**

> 📖 **[Read the Full Documentation →](https://superagenticai.github.io/superquantx/)**

**Research by [Superagentic AI](https://super-agentic.ai) - Quantum AI Research**

## 🚀 What is SuperQuantX?

SuperQuantX is a **unified quantum computing platform** that makes quantum algorithms and quantum machine learning accessible through a single, consistent API. Whether you're a researcher, developer, or quantum enthusiast, SuperQuantX provides:

- **🎯 Single API** - Works across all major quantum backends (IBM, Google, AWS, Quantinuum, D-Wave)
- **🤖 Quantum Agents** - Pre-built autonomous agents for trading, research, and optimization
- **🧠 Quantum ML** - Advanced quantum machine learning algorithms and neural networks
- **⚡ Easy Setup** - Get started in minutes with comprehensive documentation

<div align="center">
  <a href="https://super-agentic.ai" target="_blank">
    <img src="resources/logo.png" alt="SuperQuantX Logo" width="500">
  </a>
</div>

## ✨ Key Features

### **🔗 Universal Quantum Backend Support**
```python
# Same code works on ANY quantum platform
qsvm = sqx.QuantumSVM(backend='pennylane')  # PennyLane
qsvm = sqx.QuantumSVM(backend='qiskit')     # IBM Qiskit
qsvm = sqx.QuantumSVM(backend='cirq')       # Google Cirq
qsvm = sqx.QuantumSVM(backend='braket')     # AWS Braket
qsvm = sqx.QuantumSVM(backend='quantinuum') # Quantinuum H-Series
```

### **🤖 Autonomous Quantum Agents**
Ready-to-deploy intelligent agents powered by quantum algorithms:
- **QuantumTradingAgent** - Portfolio optimization and risk analysis
- **QuantumResearchAgent** - Scientific hypothesis generation and testing
- **QuantumOptimizationAgent** - Complex combinatorial and continuous optimization
- **QuantumClassificationAgent** - Advanced ML with quantum advantage

### **🧠 Quantum Machine Learning**
State-of-the-art quantum ML algorithms:
- **Quantum Support Vector Machines** - Enhanced pattern recognition
- **Quantum Neural Networks** - Hybrid quantum-classical architectures
- **QAOA & VQE** - Optimization and molecular simulation
- **Quantum Clustering** - Advanced data analysis techniques

## 🚀 Quick Start

### Installation
```bash
# Install with uv (recommended)
curl -LsSf https://astral.sh/uv/install.sh | sh
git clone https://github.com/SuperagenticAI/superquantx.git
cd superquantx
uv sync --extra all

# Or with pip
pip install superquantx
```

### Deploy Your First Quantum Agent
```python
import superquantx as sqx

# Deploy quantum trading agent
agent = sqx.QuantumTradingAgent(
    strategy="quantum_portfolio",
    risk_tolerance=0.3
)
results = agent.deploy()
print(f"Performance: {results.result['performance']}")
```

### Quantum Machine Learning
```python
# Quantum SVM with automatic backend selection
import numpy as np
qsvm = sqx.QuantumSVM(backend='auto')

# Mock training data for demonstration
X_train = np.random.rand(20, 4)
y_train = np.random.choice([0, 1], 20)
X_test = np.random.rand(10, 4)
y_test = np.random.choice([0, 1], 10)

qsvm.fit(X_train, y_train)
accuracy = qsvm.score(X_test, y_test)
print(f"Quantum SVM accuracy: {accuracy}")
```

### Advanced Quantum Algorithms
```python
# Molecular simulation with VQE
import numpy as np
from sklearn.datasets import make_classification

# Create sample Hamiltonian for VQE
hamiltonian = np.array([[1, 0], [0, -1]])  # Simple Pauli-Z
vqe = sqx.VQE(hamiltonian=hamiltonian, backend="pennylane")
ground_state = vqe.find_ground_state()
print(f"Ground state energy: {ground_state}")

# Optimization with QAOA
X, y = make_classification(n_samples=10, n_features=4, n_classes=2, random_state=42)
qaoa = sqx.QAOA(backend="pennylane")
qaoa.fit(X, y)
print("✅ QAOA successfully fitted for optimization tasks")
```

## 📖 Documentation

**Complete documentation is available at [superagenticai.github.io/superquantx](https://superagenticai.github.io/superquantx/)**

The documentation includes comprehensive guides for getting started, detailed API references, tutorials, and examples for all supported quantum backends. Visit the documentation site for:

- **Getting Started** - Installation, configuration, and your first quantum program
- **User Guides** - Platform overview, backends, and algorithms
- **Tutorials** - Hands-on quantum computing and machine learning examples
- **API Reference** - Complete API documentation with examples
- **Development** - Contributing guidelines, architecture, and testing

## 🎯 Supported Platforms

SuperQuantX provides unified access to **all major quantum computing platforms**:

| Backend | Provider | Hardware | Simulator |
|---------|----------|----------|-----------|
| **PennyLane** | Multi-vendor | ✅ Various | ✅ |
| **Qiskit** | IBM | ✅ IBM Quantum | ✅ |
| **Cirq** | Google | ✅ Google Quantum AI | ✅ |
| **AWS Braket** | Amazon | ✅ IonQ, Rigetti | ✅ |
| **TKET** | Quantinuum | ✅ H-Series | ✅ |
| **Ocean** | D-Wave | ✅ Advantage | ✅ |

## 🤖 Quantum Agents

Pre-built autonomous agents for complex problem solving:

- **🏦 QuantumTradingAgent** - Portfolio optimization and risk analysis
- **🔬 QuantumResearchAgent** - Scientific hypothesis generation and testing
- **⚡ QuantumOptimizationAgent** - Combinatorial and continuous optimization
- **🧠 QuantumClassificationAgent** - Advanced ML with quantum advantage

## 🧮 Quantum Algorithms

Comprehensive library of quantum algorithms and techniques:

### **🔍 Quantum Machine Learning**
- **Quantum Support Vector Machines (QSVM)** - Enhanced pattern recognition with quantum kernels
- **Quantum Neural Networks (QNN)** - Hybrid quantum-classical neural architectures
- **Quantum Principal Component Analysis (QPCA)** - Quantum dimensionality reduction
- **Quantum K-Means** - Clustering with quantum distance calculations

### **⚡ Optimization Algorithms**
- **Quantum Approximate Optimization Algorithm (QAOA)** - Combinatorial optimization
- **Variational Quantum Eigensolver (VQE)** - Molecular simulation and optimization
- **Quantum Annealing** - Large-scale optimization with D-Wave systems

### **🧠 Advanced Quantum AI**
- **Quantum Reinforcement Learning** - RL with quantum advantage
- **Quantum Natural Language Processing** - Quantum-enhanced text analysis
- **Quantum Computer Vision** - Image processing with quantum circuits

## 💡 Why SuperQuantX?

| Traditional Approach | SuperQuantX Advantage |
|--------------------|---------------------|
| ❌ Multiple complex SDKs | ✅ Single unified API |
| ❌ Months to learn quantum | ✅ Minutes to first algorithm |
| ❌ Backend-specific code | ✅ Write once, run anywhere |
| ❌ Manual optimization | ✅ Automatic backend selection |
| ❌ Limited algorithms | ✅ Comprehensive algorithm library |

## 🤝 Contributing

We welcome contributions to SuperQuantX! Here's how to get involved:

### **🔧 Development Setup**
```bash
# Fork and clone the repository
git clone https://github.com/your-username/superquantx.git
cd superquantx

# Install development dependencies
uv sync --extra dev

# Run tests to verify setup
uv run pytest
```

### **🐛 Bug Reports & Feature Requests**
- **[Open an issue](https://github.com/SuperagenticAI/superquantx/issues)** - Report bugs or request features
- **[Read contributing guide](docs/development/contributing.md)** - Detailed contribution guidelines

### **📝 Documentation**
Help improve our documentation:
- Fix typos and clarify explanations
- Add examples and tutorials
- Improve API documentation
- Translate documentation

## 🔗 Resources & Community

### **📚 Learn More**
- **[Official Documentation](docs/)** - Complete guides and API reference
- **[Tutorial Notebooks](examples/)** - Jupyter notebooks with examples


## 📄 License

SuperQuantX is released under the [Apache License 2.0](LICENSE). Feel free to use it in your projects, research, and commercial applications.

---

## 🚀 Get Started Now

```bash
# Install SuperQuantX
pip install superquantx

# Deploy your first quantum agent
python -c "
import superquantx as sqx
agent = sqx.QuantumOptimizationAgent()
print('✅ SuperQuantX is ready!')
"
```

**Ready to explore quantum computing?**

👉 **[Start with the Quick Start Guide →](https://superagenticai.github.io/superquantx/)**

---

<div align="center">

**SuperQuantX: Making Quantum Computing Accessible to all**

*Built with ❤️ by [Superagentic AI](https://super-agentic.ai)*

⭐ **Star this repo** if SuperQuantX helps your quantum journey!

</div>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "superquantx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Shashi Jagtap <shashi@super-agentic.ai>, Shashi Jagtap <shashikant.jagtap@icloud.com>, Superagentic AI Research Team <research@super-agentic.ai>",
    "keywords": "agentic-ai, braket, cirq, experimental, pennylane, qiskit, quantum-agents, quantum-algorithms, quantum-computing, quantum-machine-learning, research-platform, unified-api",
    "author": null,
    "author_email": "Shashi Jagtap <shashi@super-agentic.ai>, Shashi Jagtap <shashikant.jagtap@icloud.com>, SuperXLab Research Team <research@super-agentic.ai>",
    "download_url": "https://files.pythonhosted.org/packages/3c/7e/62168e99df3c73d37bf5cc0838e550fb67d0fff022e64084785839a271f7/superquantx-0.1.2.tar.gz",
    "platform": null,
    "description": "[![PyPI - Version](https://img.shields.io/pypi/v/superquantx)](https://pypi.org/project/superquantx/)\n[![Python Version](https://img.shields.io/pypi/pyversions/superquantx)](https://pypi.org/project/superquantx/)\n[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\n[![Tests](https://github.com/SuperagenticAI/superquantx/workflows/Tests/badge.svg)](https://github.com/SuperagenticAI/superquantx/actions)\n[![Documentation](https://img.shields.io/badge/docs-mkdocs-blue)](https://superagenticai.github.io/superquantx)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n\n# SuperQuantX\n### The foundation for the future of Agentic and Quantum AI\nSuperQuantX unified API for the next wave of Quantum AI. It's a foundation to build powerful Quantum Agentic AI systems with a single interface to Qiskit, Cirq, PennyLane, and more. SuperQuantX is your launchpad into the world of Quantum + Agentic AI.\n\n**Unified Quantum Computing Platform - Building autonomous quantum-enhanced AI systems**\n\n> \ud83d\udcd6 **[Read the Full Documentation \u2192](https://superagenticai.github.io/superquantx/)**\n\n**Research by [Superagentic AI](https://super-agentic.ai) - Quantum AI Research**\n\n## \ud83d\ude80 What is SuperQuantX?\n\nSuperQuantX is a **unified quantum computing platform** that makes quantum algorithms and quantum machine learning accessible through a single, consistent API. Whether you're a researcher, developer, or quantum enthusiast, SuperQuantX provides:\n\n- **\ud83c\udfaf Single API** - Works across all major quantum backends (IBM, Google, AWS, Quantinuum, D-Wave)\n- **\ud83e\udd16 Quantum Agents** - Pre-built autonomous agents for trading, research, and optimization\n- **\ud83e\udde0 Quantum ML** - Advanced quantum machine learning algorithms and neural networks\n- **\u26a1 Easy Setup** - Get started in minutes with comprehensive documentation\n\n<div align=\"center\">\n  <a href=\"https://super-agentic.ai\" target=\"_blank\">\n    <img src=\"resources/logo.png\" alt=\"SuperQuantX Logo\" width=\"500\">\n  </a>\n</div>\n\n## \u2728 Key Features\n\n### **\ud83d\udd17 Universal Quantum Backend Support**\n```python\n# Same code works on ANY quantum platform\nqsvm = sqx.QuantumSVM(backend='pennylane')  # PennyLane\nqsvm = sqx.QuantumSVM(backend='qiskit')     # IBM Qiskit\nqsvm = sqx.QuantumSVM(backend='cirq')       # Google Cirq\nqsvm = sqx.QuantumSVM(backend='braket')     # AWS Braket\nqsvm = sqx.QuantumSVM(backend='quantinuum') # Quantinuum H-Series\n```\n\n### **\ud83e\udd16 Autonomous Quantum Agents**\nReady-to-deploy intelligent agents powered by quantum algorithms:\n- **QuantumTradingAgent** - Portfolio optimization and risk analysis\n- **QuantumResearchAgent** - Scientific hypothesis generation and testing\n- **QuantumOptimizationAgent** - Complex combinatorial and continuous optimization\n- **QuantumClassificationAgent** - Advanced ML with quantum advantage\n\n### **\ud83e\udde0 Quantum Machine Learning**\nState-of-the-art quantum ML algorithms:\n- **Quantum Support Vector Machines** - Enhanced pattern recognition\n- **Quantum Neural Networks** - Hybrid quantum-classical architectures\n- **QAOA & VQE** - Optimization and molecular simulation\n- **Quantum Clustering** - Advanced data analysis techniques\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n```bash\n# Install with uv (recommended)\ncurl -LsSf https://astral.sh/uv/install.sh | sh\ngit clone https://github.com/SuperagenticAI/superquantx.git\ncd superquantx\nuv sync --extra all\n\n# Or with pip\npip install superquantx\n```\n\n### Deploy Your First Quantum Agent\n```python\nimport superquantx as sqx\n\n# Deploy quantum trading agent\nagent = sqx.QuantumTradingAgent(\n    strategy=\"quantum_portfolio\",\n    risk_tolerance=0.3\n)\nresults = agent.deploy()\nprint(f\"Performance: {results.result['performance']}\")\n```\n\n### Quantum Machine Learning\n```python\n# Quantum SVM with automatic backend selection\nimport numpy as np\nqsvm = sqx.QuantumSVM(backend='auto')\n\n# Mock training data for demonstration\nX_train = np.random.rand(20, 4)\ny_train = np.random.choice([0, 1], 20)\nX_test = np.random.rand(10, 4)\ny_test = np.random.choice([0, 1], 10)\n\nqsvm.fit(X_train, y_train)\naccuracy = qsvm.score(X_test, y_test)\nprint(f\"Quantum SVM accuracy: {accuracy}\")\n```\n\n### Advanced Quantum Algorithms\n```python\n# Molecular simulation with VQE\nimport numpy as np\nfrom sklearn.datasets import make_classification\n\n# Create sample Hamiltonian for VQE\nhamiltonian = np.array([[1, 0], [0, -1]])  # Simple Pauli-Z\nvqe = sqx.VQE(hamiltonian=hamiltonian, backend=\"pennylane\")\nground_state = vqe.find_ground_state()\nprint(f\"Ground state energy: {ground_state}\")\n\n# Optimization with QAOA\nX, y = make_classification(n_samples=10, n_features=4, n_classes=2, random_state=42)\nqaoa = sqx.QAOA(backend=\"pennylane\")\nqaoa.fit(X, y)\nprint(\"\u2705 QAOA successfully fitted for optimization tasks\")\n```\n\n## \ud83d\udcd6 Documentation\n\n**Complete documentation is available at [superagenticai.github.io/superquantx](https://superagenticai.github.io/superquantx/)**\n\nThe documentation includes comprehensive guides for getting started, detailed API references, tutorials, and examples for all supported quantum backends. Visit the documentation site for:\n\n- **Getting Started** - Installation, configuration, and your first quantum program\n- **User Guides** - Platform overview, backends, and algorithms\n- **Tutorials** - Hands-on quantum computing and machine learning examples\n- **API Reference** - Complete API documentation with examples\n- **Development** - Contributing guidelines, architecture, and testing\n\n## \ud83c\udfaf Supported Platforms\n\nSuperQuantX provides unified access to **all major quantum computing platforms**:\n\n| Backend | Provider | Hardware | Simulator |\n|---------|----------|----------|-----------|\n| **PennyLane** | Multi-vendor | \u2705 Various | \u2705 |\n| **Qiskit** | IBM | \u2705 IBM Quantum | \u2705 |\n| **Cirq** | Google | \u2705 Google Quantum AI | \u2705 |\n| **AWS Braket** | Amazon | \u2705 IonQ, Rigetti | \u2705 |\n| **TKET** | Quantinuum | \u2705 H-Series | \u2705 |\n| **Ocean** | D-Wave | \u2705 Advantage | \u2705 |\n\n## \ud83e\udd16 Quantum Agents\n\nPre-built autonomous agents for complex problem solving:\n\n- **\ud83c\udfe6 QuantumTradingAgent** - Portfolio optimization and risk analysis\n- **\ud83d\udd2c QuantumResearchAgent** - Scientific hypothesis generation and testing\n- **\u26a1 QuantumOptimizationAgent** - Combinatorial and continuous optimization\n- **\ud83e\udde0 QuantumClassificationAgent** - Advanced ML with quantum advantage\n\n## \ud83e\uddee Quantum Algorithms\n\nComprehensive library of quantum algorithms and techniques:\n\n### **\ud83d\udd0d Quantum Machine Learning**\n- **Quantum Support Vector Machines (QSVM)** - Enhanced pattern recognition with quantum kernels\n- **Quantum Neural Networks (QNN)** - Hybrid quantum-classical neural architectures\n- **Quantum Principal Component Analysis (QPCA)** - Quantum dimensionality reduction\n- **Quantum K-Means** - Clustering with quantum distance calculations\n\n### **\u26a1 Optimization Algorithms**\n- **Quantum Approximate Optimization Algorithm (QAOA)** - Combinatorial optimization\n- **Variational Quantum Eigensolver (VQE)** - Molecular simulation and optimization\n- **Quantum Annealing** - Large-scale optimization with D-Wave systems\n\n### **\ud83e\udde0 Advanced Quantum AI**\n- **Quantum Reinforcement Learning** - RL with quantum advantage\n- **Quantum Natural Language Processing** - Quantum-enhanced text analysis\n- **Quantum Computer Vision** - Image processing with quantum circuits\n\n## \ud83d\udca1 Why SuperQuantX?\n\n| Traditional Approach | SuperQuantX Advantage |\n|--------------------|---------------------|\n| \u274c Multiple complex SDKs | \u2705 Single unified API |\n| \u274c Months to learn quantum | \u2705 Minutes to first algorithm |\n| \u274c Backend-specific code | \u2705 Write once, run anywhere |\n| \u274c Manual optimization | \u2705 Automatic backend selection |\n| \u274c Limited algorithms | \u2705 Comprehensive algorithm library |\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions to SuperQuantX! Here's how to get involved:\n\n### **\ud83d\udd27 Development Setup**\n```bash\n# Fork and clone the repository\ngit clone https://github.com/your-username/superquantx.git\ncd superquantx\n\n# Install development dependencies\nuv sync --extra dev\n\n# Run tests to verify setup\nuv run pytest\n```\n\n### **\ud83d\udc1b Bug Reports & Feature Requests**\n- **[Open an issue](https://github.com/SuperagenticAI/superquantx/issues)** - Report bugs or request features\n- **[Read contributing guide](docs/development/contributing.md)** - Detailed contribution guidelines\n\n### **\ud83d\udcdd Documentation**\nHelp improve our documentation:\n- Fix typos and clarify explanations\n- Add examples and tutorials\n- Improve API documentation\n- Translate documentation\n\n## \ud83d\udd17 Resources & Community\n\n### **\ud83d\udcda Learn More**\n- **[Official Documentation](docs/)** - Complete guides and API reference\n- **[Tutorial Notebooks](examples/)** - Jupyter notebooks with examples\n\n\n## \ud83d\udcc4 License\n\nSuperQuantX is released under the [Apache License 2.0](LICENSE). Feel free to use it in your projects, research, and commercial applications.\n\n---\n\n## \ud83d\ude80 Get Started Now\n\n```bash\n# Install SuperQuantX\npip install superquantx\n\n# Deploy your first quantum agent\npython -c \"\nimport superquantx as sqx\nagent = sqx.QuantumOptimizationAgent()\nprint('\u2705 SuperQuantX is ready!')\n\"\n```\n\n**Ready to explore quantum computing?**\n\n\ud83d\udc49 **[Start with the Quick Start Guide \u2192](https://superagenticai.github.io/superquantx/)**\n\n---\n\n<div align=\"center\">\n\n**SuperQuantX: Making Quantum Computing Accessible to all**\n\n*Built with \u2764\ufe0f by [Superagentic AI](https://super-agentic.ai)*\n\n\u2b50 **Star this repo** if SuperQuantX helps your quantum journey!\n\n</div>\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Quantum AI Research Platform - Unified API for QuantumAgentic AIsystems research",
    "version": "0.1.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/SuperagenticAI/superquantx/issues",
        "Changelog": "https://github.com/SuperagenticAI/superquantx/blob/main/CHANGELOG.md",
        "Documentation": "https://superagenticai.github.io/superquantx",
        "Homepage": "https://github.com/SuperagenticAI/superquantx",
        "Repository": "https://github.com/SuperagenticAI/superquantx",
        "Source Code": "https://github.com/SuperagenticAI/superquantx"
    },
    "split_keywords": [
        "agentic-ai",
        " braket",
        " cirq",
        " experimental",
        " pennylane",
        " qiskit",
        " quantum-agents",
        " quantum-algorithms",
        " quantum-computing",
        " quantum-machine-learning",
        " research-platform",
        " unified-api"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c0c4347fca40700eb9c21211717c8eafb94ce8fbbe3beb96bae5182f0dbb8bfc",
                "md5": "3cb0d29a3313677ac62033f5b4f8452f",
                "sha256": "b2e31ced14c9e54f685cf33bdee7720b34eca580223e8e933266b18484de08da"
            },
            "downloads": -1,
            "filename": "superquantx-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3cb0d29a3313677ac62033f5b4f8452f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 178220,
            "upload_time": "2025-09-11T22:36:25",
            "upload_time_iso_8601": "2025-09-11T22:36:25.989389Z",
            "url": "https://files.pythonhosted.org/packages/c0/c4/347fca40700eb9c21211717c8eafb94ce8fbbe3beb96bae5182f0dbb8bfc/superquantx-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3c7e62168e99df3c73d37bf5cc0838e550fb67d0fff022e64084785839a271f7",
                "md5": "d9fd2c903f8996da14fd0bb7a03d7973",
                "sha256": "09dff5040cdb253f0efcbcf3a966619ffae5fe3daa11d2b4f9d5eb3e8c1a1bc0"
            },
            "downloads": -1,
            "filename": "superquantx-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d9fd2c903f8996da14fd0bb7a03d7973",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 1529310,
            "upload_time": "2025-09-11T22:36:28",
            "upload_time_iso_8601": "2025-09-11T22:36:28.619592Z",
            "url": "https://files.pythonhosted.org/packages/3c/7e/62168e99df3c73d37bf5cc0838e550fb67d0fff022e64084785839a271f7/superquantx-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-11 22:36:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SuperagenticAI",
    "github_project": "superquantx",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "superquantx"
}
        
Elapsed time: 4.67866s