superverse


Namesuperverse JSON
Version 0.3.0 PyPI version JSON
download
home_pagehttps://github.com/khulnasoft/superverse
SummaryA set of easy-to-use utils that will come in handy in any Computer Vision project
upload_time2024-11-25 23:41:41
maintainerMd Sulaiman
docs_urlNone
authorMd Sulaiman
requires_python<4.0,>=3.8
licenseMIT
keywords machine-learning deep-learning vision ml dl ai khulnasoft
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MetaVision

[notebooks](https://github.com/khulnasoft/notebooks) | [inference](https://github.com/khulnasoft/inference) | [autodistill](https://github.com/autodistill/autodistill) | [maestro](https://github.com/khulnasoft/multimodal-maestro)

<br>

[![version](https://badge.fury.io/py/superverse.svg)](https://badge.fury.io/py/superverse)
[![downloads](https://img.shields.io/pypi/dm/superverse)](https://pypistats.org/packages/superverse)
[![snyk](https://snyk.io/advisor/python/superverse/badge.svg)](https://snyk.io/advisor/python/superverse)
[![license](https://img.shields.io/pypi/l/superverse)](https://github.com/khulnasoft/superverse/blob/main/LICENSE.md)
[![python-version](https://img.shields.io/pypi/pyversions/superverse)](https://badge.fury.io/py/superverse)
[![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/khulnasoft/superverse/blob/main/demo.ipynb)
[![gradio](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Khulnasoft/Annotators)
[![discord](https://img.shields.io/discord/1159501506232451173?logo=discord&label=discord&labelColor=fff&color=5865f2&link=https%3A%2F%2Fdiscord.gg%2FGbfgXGJ8Bk)](https://discord.gg/GbfgXGJ8Bk)
[![built-with-material-for-mkdocs](https://img.shields.io/badge/Material_for_MkDocs-526CFE?logo=MaterialForMkDocs&logoColor=white)](https://squidfunk.github.io/mkdocs-material/)

</div>

## 👋 hello

**We write your reusable computer vision tools.** Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

## 💻 install

Pip install the superverse package in a
[**Python>=3.8**](https://www.python.org/) environment.

```bash
pip install superverse
```

Read more about conda, mamba, and installing from source in our [guide](https://khulnasoft.github.io/superverse/).

## 🔥 quickstart

### models

Superverse was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created [connectors](https://superverse.khulnasoft.com/latest/detection/core/#detections) for the most popular libraries like Ultralytics, Transformers, or MMDetection.

```python
import cv2
import superverse as sv
from ultralytics import YOLO

image = cv2.imread(...)
model = YOLO("yolov8s.pt")
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

len(detections)
# 5
```

<details>
<summary>👉 more model connectors</summary>

- inference

  ```python
  import cv2
  import superverse as sv
  from inference import get_model

  image = cv2.imread(...)
  model = get_model(model_id="yolov8s-640", api_key=<KHULNASOFT API KEY>)
  result = model.infer(image)[0]
  detections = sv.Detections.from_inference(result)

  len(detections)
  # 5
  ```

</details>

### annotators

```python
import cv2
import superverse as sv

image = cv2.imread(...)
detections = sv.Detections(...)

box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(
  scene=image.copy(),
  detections=detections)
```

### datasets

```python
import superverse as sv
from khulnasoft import Khulnasoft

project = Khulnasoft().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)
dataset = project.version(<PROJECT_VERSION>).download("coco")

ds = sv.DetectionDataset.from_coco(
    images_directory_path=f"{dataset.location}/train",
    annotations_path=f"{dataset.location}/train/_annotations.coco.json",
)

path, image, annotation = ds[0]
    # loads image on demand

for path, image, annotation in ds:
    # loads image on demand
```

<details close>
<summary>👉 more dataset utils</summary>

- load

  ```python
  dataset = sv.DetectionDataset.from_yolo(
      images_directory_path=...,
      annotations_directory_path=...,
      data_yaml_path=...
  )

  dataset = sv.DetectionDataset.from_pascal_voc(
      images_directory_path=...,
      annotations_directory_path=...
  )

  dataset = sv.DetectionDataset.from_coco(
      images_directory_path=...,
      annotations_path=...
  )
  ```

- split

  ```python
  train_dataset, test_dataset = dataset.split(split_ratio=0.7)
  test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)

  len(train_dataset), len(test_dataset), len(valid_dataset)
  # (700, 150, 150)
  ```

- merge

  ```python
  ds_1 = sv.DetectionDataset(...)
  len(ds_1)
  # 100
  ds_1.classes
  # ['dog', 'person']

  ds_2 = sv.DetectionDataset(...)
  len(ds_2)
  # 200
  ds_2.classes
  # ['cat']

  ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])
  len(ds_merged)
  # 300
  ds_merged.classes
  # ['cat', 'dog', 'person']
  ```

- save

  ```python
  dataset.as_yolo(
      images_directory_path=...,
      annotations_directory_path=...,
      data_yaml_path=...
  )

  dataset.as_pascal_voc(
      images_directory_path=...,
      annotations_directory_path=...
  )

  dataset.as_coco(
      images_directory_path=...,
      annotations_path=...
  )
  ```

- convert

  ```python
  sv.DetectionDataset.from_yolo(
      images_directory_path=...,
      annotations_directory_path=...,
      data_yaml_path=...
  ).as_pascal_voc(
      images_directory_path=...,
      annotations_directory_path=...
  )
  ```

</details>

<br/>

## 📚 documentation

Visit our [documentation](https://khulnasoft.github.io/superverse) page to learn how superverse can help you build computer vision applications faster and more reliably.

## 🏆 contribution

We love your input! Please see our [contributing guide](https://github.com/khulnasoft/superverse/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

<p align="center">
    <a href="https://github.com/khulnasoft/superverse/graphs/contributors">
      <img src="https://contrib.rocks/image?repo=khulnasoft/superverse" />
    </a>
</p>


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/khulnasoft/superverse",
    "name": "superverse",
    "maintainer": "Md Sulaiman",
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": "dev.sulaiman@icloud.com",
    "keywords": "machine-learning, deep-learning, vision, ML, DL, AI, Khulnasoft",
    "author": "Md Sulaiman",
    "author_email": "dev.sulaiman@icloud.com",
    "download_url": "https://files.pythonhosted.org/packages/cb/cd/284ae683d0a657b7eff41eed166f7da9f2333f8534794ef650100712e0d7/superverse-0.3.0.tar.gz",
    "platform": null,
    "description": "# MetaVision\n\n[notebooks](https://github.com/khulnasoft/notebooks) | [inference](https://github.com/khulnasoft/inference) | [autodistill](https://github.com/autodistill/autodistill) | [maestro](https://github.com/khulnasoft/multimodal-maestro)\n\n<br>\n\n[![version](https://badge.fury.io/py/superverse.svg)](https://badge.fury.io/py/superverse)\n[![downloads](https://img.shields.io/pypi/dm/superverse)](https://pypistats.org/packages/superverse)\n[![snyk](https://snyk.io/advisor/python/superverse/badge.svg)](https://snyk.io/advisor/python/superverse)\n[![license](https://img.shields.io/pypi/l/superverse)](https://github.com/khulnasoft/superverse/blob/main/LICENSE.md)\n[![python-version](https://img.shields.io/pypi/pyversions/superverse)](https://badge.fury.io/py/superverse)\n[![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/khulnasoft/superverse/blob/main/demo.ipynb)\n[![gradio](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Khulnasoft/Annotators)\n[![discord](https://img.shields.io/discord/1159501506232451173?logo=discord&label=discord&labelColor=fff&color=5865f2&link=https%3A%2F%2Fdiscord.gg%2FGbfgXGJ8Bk)](https://discord.gg/GbfgXGJ8Bk)\n[![built-with-material-for-mkdocs](https://img.shields.io/badge/Material_for_MkDocs-526CFE?logo=MaterialForMkDocs&logoColor=white)](https://squidfunk.github.io/mkdocs-material/)\n\n</div>\n\n## \ud83d\udc4b hello\n\n**We write your reusable computer vision tools.** Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! \ud83e\udd1d\n\n## \ud83d\udcbb install\n\nPip install the superverse package in a\n[**Python>=3.8**](https://www.python.org/) environment.\n\n```bash\npip install superverse\n```\n\nRead more about conda, mamba, and installing from source in our [guide](https://khulnasoft.github.io/superverse/).\n\n## \ud83d\udd25 quickstart\n\n### models\n\nSuperverse was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created [connectors](https://superverse.khulnasoft.com/latest/detection/core/#detections) for the most popular libraries like Ultralytics, Transformers, or MMDetection.\n\n```python\nimport cv2\nimport superverse as sv\nfrom ultralytics import YOLO\n\nimage = cv2.imread(...)\nmodel = YOLO(\"yolov8s.pt\")\nresult = model(image)[0]\ndetections = sv.Detections.from_ultralytics(result)\n\nlen(detections)\n# 5\n```\n\n<details>\n<summary>\ud83d\udc49 more model connectors</summary>\n\n- inference\n\n  ```python\n  import cv2\n  import superverse as sv\n  from inference import get_model\n\n  image = cv2.imread(...)\n  model = get_model(model_id=\"yolov8s-640\", api_key=<KHULNASOFT API KEY>)\n  result = model.infer(image)[0]\n  detections = sv.Detections.from_inference(result)\n\n  len(detections)\n  # 5\n  ```\n\n</details>\n\n### annotators\n\n```python\nimport cv2\nimport superverse as sv\n\nimage = cv2.imread(...)\ndetections = sv.Detections(...)\n\nbox_annotator = sv.BoxAnnotator()\nannotated_frame = box_annotator.annotate(\n  scene=image.copy(),\n  detections=detections)\n```\n\n### datasets\n\n```python\nimport superverse as sv\nfrom khulnasoft import Khulnasoft\n\nproject = Khulnasoft().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)\ndataset = project.version(<PROJECT_VERSION>).download(\"coco\")\n\nds = sv.DetectionDataset.from_coco(\n    images_directory_path=f\"{dataset.location}/train\",\n    annotations_path=f\"{dataset.location}/train/_annotations.coco.json\",\n)\n\npath, image, annotation = ds[0]\n    # loads image on demand\n\nfor path, image, annotation in ds:\n    # loads image on demand\n```\n\n<details close>\n<summary>\ud83d\udc49 more dataset utils</summary>\n\n- load\n\n  ```python\n  dataset = sv.DetectionDataset.from_yolo(\n      images_directory_path=...,\n      annotations_directory_path=...,\n      data_yaml_path=...\n  )\n\n  dataset = sv.DetectionDataset.from_pascal_voc(\n      images_directory_path=...,\n      annotations_directory_path=...\n  )\n\n  dataset = sv.DetectionDataset.from_coco(\n      images_directory_path=...,\n      annotations_path=...\n  )\n  ```\n\n- split\n\n  ```python\n  train_dataset, test_dataset = dataset.split(split_ratio=0.7)\n  test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)\n\n  len(train_dataset), len(test_dataset), len(valid_dataset)\n  # (700, 150, 150)\n  ```\n\n- merge\n\n  ```python\n  ds_1 = sv.DetectionDataset(...)\n  len(ds_1)\n  # 100\n  ds_1.classes\n  # ['dog', 'person']\n\n  ds_2 = sv.DetectionDataset(...)\n  len(ds_2)\n  # 200\n  ds_2.classes\n  # ['cat']\n\n  ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])\n  len(ds_merged)\n  # 300\n  ds_merged.classes\n  # ['cat', 'dog', 'person']\n  ```\n\n- save\n\n  ```python\n  dataset.as_yolo(\n      images_directory_path=...,\n      annotations_directory_path=...,\n      data_yaml_path=...\n  )\n\n  dataset.as_pascal_voc(\n      images_directory_path=...,\n      annotations_directory_path=...\n  )\n\n  dataset.as_coco(\n      images_directory_path=...,\n      annotations_path=...\n  )\n  ```\n\n- convert\n\n  ```python\n  sv.DetectionDataset.from_yolo(\n      images_directory_path=...,\n      annotations_directory_path=...,\n      data_yaml_path=...\n  ).as_pascal_voc(\n      images_directory_path=...,\n      annotations_directory_path=...\n  )\n  ```\n\n</details>\n\n<br/>\n\n## \ud83d\udcda documentation\n\nVisit our [documentation](https://khulnasoft.github.io/superverse) page to learn how superverse can help you build computer vision applications faster and more reliably.\n\n## \ud83c\udfc6 contribution\n\nWe love your input! Please see our [contributing guide](https://github.com/khulnasoft/superverse/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n\n<p align=\"center\">\n    <a href=\"https://github.com/khulnasoft/superverse/graphs/contributors\">\n      <img src=\"https://contrib.rocks/image?repo=khulnasoft/superverse\" />\n    </a>\n</p>\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A set of easy-to-use utils that will come in handy in any Computer Vision project",
    "version": "0.3.0",
    "project_urls": {
        "Documentation": "https://superverse.khulnasoft.com/latest/",
        "Homepage": "https://github.com/khulnasoft/superverse",
        "Repository": "https://github.com/khulnasoft/superverse"
    },
    "split_keywords": [
        "machine-learning",
        " deep-learning",
        " vision",
        " ml",
        " dl",
        " ai",
        " khulnasoft"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7cca821b14401d787df67c1580fbb609e252a252e3b745b12a50862c3cb1baca",
                "md5": "d6e34d6f8a522baaf39ea6ce890d1402",
                "sha256": "3a374441bac545649f1909711708d73752a66fabcc418aa5d48882ec15fab121"
            },
            "downloads": -1,
            "filename": "superverse-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d6e34d6f8a522baaf39ea6ce890d1402",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 179573,
            "upload_time": "2024-11-25T23:41:39",
            "upload_time_iso_8601": "2024-11-25T23:41:39.888193Z",
            "url": "https://files.pythonhosted.org/packages/7c/ca/821b14401d787df67c1580fbb609e252a252e3b745b12a50862c3cb1baca/superverse-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cbcd284ae683d0a657b7eff41eed166f7da9f2333f8534794ef650100712e0d7",
                "md5": "2505b51055607c5a9be6d3908f94bf9b",
                "sha256": "ffaa5905228d980fe288d40f45de3343ea88969d7baa5b2abe4d1f23cd7b9a97"
            },
            "downloads": -1,
            "filename": "superverse-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2505b51055607c5a9be6d3908f94bf9b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 143546,
            "upload_time": "2024-11-25T23:41:41",
            "upload_time_iso_8601": "2024-11-25T23:41:41.991986Z",
            "url": "https://files.pythonhosted.org/packages/cb/cd/284ae683d0a657b7eff41eed166f7da9f2333f8534794ef650100712e0d7/superverse-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-25 23:41:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "khulnasoft",
    "github_project": "superverse",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "superverse"
}
        
Elapsed time: 0.48846s