supplynetpy


Namesupplynetpy JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryPython Library for Modeling and Discrete Event Simulation of Supply Chains
upload_time2025-08-21 11:21:03
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT License Copyright (c) 2024 Tushar Lone, Neha Karanjkar, Lekshmi P. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords discrete event simulation modeling simulation supply chains
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SupplyNetPy

SupplyNetPy is a Python library designed for modeling, simulation, design exploration, and optimization of supply chains and inventory systems. It allows users to create and simulate supply chain networks with various inventory replenishment policies.

## Installation

You can install SupplyNetPy using pip:

```sh
pip install supplynetpy
```

## Dependencies

[SimPy](https://simpy.readthedocs.io/en/latest/)

## Authors

- Tushar Lone [GitHub](https://github.com/tusharlone)
- Lekshmi P [GitHub](https://github.com/LekshmiPremkumar)
- Neha Karanjkar [GitHub](https://github.com/NehaKaranjkar)

## Quick Start
#### Creating supply chain networks
~~~
# import the library
import SupplyNetPy.Components as scm

# import simpy and create enviornment
import simpy
env = simpy.Environment()

# let us define a supplier with infinite supply
supplier1 = {'ID': 'S1', 'name': 'Supplier1', 'node_type': 'infinite_supplier'}

# a distributor with inventory
distributor1 = {'ID': 'D1', 'name': 'Distributor1', 'node_type': 'distributor', 
                'capacity': 150, 'initial_level': 50, 'inventory_holding_cost': 0.2,  # inventory params
                'replenishment_policy': scm.SSReplenishment, 'policy_param': {'s':100,'S':150}, # inventory params
                'product_buy_price': 100,'product_sell_price': 105}

# linking supplier1 with distributor1
link1 = {'ID': 'L1', 'source': 'S1', 'sink': 'D1', 'cost': 5, 'lead_time': lambda: 2}

# define demand at the distributor
demand1 = {'ID': 'd1', 'name': 'Demand1', 'order_arrival_model': lambda: 1,
            'order_quantity_model': lambda: 10, 'demand_node': 'D1'}

# create a supply chain network
supplychainnet = scm.create_sc_net(nodes=[supplier1, distributor1], links=[link1], demands=[demand1])

# simulate and see results
supplychainnet = scm.simulate_sc_net(supplychainnet, sim_time=20, logging=True)
~~~


## Documentation
For detailed documentation and advanced usage, please refer to the [official documentation](#).
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "supplynetpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Tushar Lone <tusharlone28@gmail.com>",
    "keywords": "discrete event simulation, modeling, simulation, supply chains",
    "author": null,
    "author_email": "Tushar Lone <tusharlone28@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/e7/31/7a3709692e1a8b2191fcd0459b36a8020f8fcc28b25534b18591ca3972a6/supplynetpy-0.1.0.tar.gz",
    "platform": null,
    "description": "# SupplyNetPy\n\nSupplyNetPy is a Python library designed for modeling, simulation, design exploration, and optimization of supply chains and inventory systems. It allows users to create and simulate supply chain networks with various inventory replenishment policies.\n\n## Installation\n\nYou can install SupplyNetPy using pip:\n\n```sh\npip install supplynetpy\n```\n\n## Dependencies\n\n[SimPy](https://simpy.readthedocs.io/en/latest/)\n\n## Authors\n\n- Tushar Lone [GitHub](https://github.com/tusharlone)\n- Lekshmi P [GitHub](https://github.com/LekshmiPremkumar)\n- Neha Karanjkar [GitHub](https://github.com/NehaKaranjkar)\n\n## Quick Start\n#### Creating supply chain networks\n~~~\n# import the library\nimport SupplyNetPy.Components as scm\n\n# import simpy and create enviornment\nimport simpy\nenv = simpy.Environment()\n\n# let us define a supplier with infinite supply\nsupplier1 = {'ID': 'S1', 'name': 'Supplier1', 'node_type': 'infinite_supplier'}\n\n# a distributor with inventory\ndistributor1 = {'ID': 'D1', 'name': 'Distributor1', 'node_type': 'distributor', \n                'capacity': 150, 'initial_level': 50, 'inventory_holding_cost': 0.2,  # inventory params\n                'replenishment_policy': scm.SSReplenishment, 'policy_param': {'s':100,'S':150}, # inventory params\n                'product_buy_price': 100,'product_sell_price': 105}\n\n# linking supplier1 with distributor1\nlink1 = {'ID': 'L1', 'source': 'S1', 'sink': 'D1', 'cost': 5, 'lead_time': lambda: 2}\n\n# define demand at the distributor\ndemand1 = {'ID': 'd1', 'name': 'Demand1', 'order_arrival_model': lambda: 1,\n            'order_quantity_model': lambda: 10, 'demand_node': 'D1'}\n\n# create a supply chain network\nsupplychainnet = scm.create_sc_net(nodes=[supplier1, distributor1], links=[link1], demands=[demand1])\n\n# simulate and see results\nsupplychainnet = scm.simulate_sc_net(supplychainnet, sim_time=20, logging=True)\n~~~\n\n\n## Documentation\nFor detailed documentation and advanced usage, please refer to the [official documentation](#).",
    "bugtrack_url": null,
    "license": "MIT License\n        \n        Copyright (c) 2024 Tushar Lone, Neha Karanjkar, Lekshmi P.\n        \n        Permission is hereby granted, free of charge, to any person obtaining a copy\n        of this software and associated documentation files (the \"Software\"), to deal\n        in the Software without restriction, including without limitation the rights\n        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n        copies of the Software, and to permit persons to whom the Software is\n        furnished to do so, subject to the following conditions:\n        \n        The above copyright notice and this permission notice shall be included in all\n        copies or substantial portions of the Software.\n        \n        THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n        SOFTWARE.",
    "summary": "Python Library for Modeling and Discrete Event Simulation of Supply Chains",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [
        "discrete event simulation",
        " modeling",
        " simulation",
        " supply chains"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "512f603890de7e3b254a39d25763c93e0ec8bfe6599fe2d7e829330a3852df08",
                "md5": "9ae114505cbc114054a01b74b14e03a4",
                "sha256": "8fdcd8cd43e54a6791246c548a7f5313a9650bc0d7314134dce9867eb873501d"
            },
            "downloads": -1,
            "filename": "supplynetpy-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9ae114505cbc114054a01b74b14e03a4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 32178,
            "upload_time": "2025-08-21T11:20:56",
            "upload_time_iso_8601": "2025-08-21T11:20:56.418397Z",
            "url": "https://files.pythonhosted.org/packages/51/2f/603890de7e3b254a39d25763c93e0ec8bfe6599fe2d7e829330a3852df08/supplynetpy-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e7317a3709692e1a8b2191fcd0459b36a8020f8fcc28b25534b18591ca3972a6",
                "md5": "2896399875273ba2b9ac62c9f6e8e25c",
                "sha256": "705bd33df742b623a9fb748495d2ce61fabd1c3486a85b4782f01e1179c85440"
            },
            "downloads": -1,
            "filename": "supplynetpy-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2896399875273ba2b9ac62c9f6e8e25c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 1540180,
            "upload_time": "2025-08-21T11:21:03",
            "upload_time_iso_8601": "2025-08-21T11:21:03.923135Z",
            "url": "https://files.pythonhosted.org/packages/e7/31/7a3709692e1a8b2191fcd0459b36a8020f8fcc28b25534b18591ca3972a6/supplynetpy-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-21 11:21:03",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "supplynetpy"
}
        
Elapsed time: 1.20427s