<div align="center">
<a href="https://swarms.world">
<h1>Swarms Memory</h1>
</a>
</div>
<p align="center">
<em>The Enterprise-Grade Production-Ready RAG Framework</em>
</p>
<p align="center">
<a href="https://pypi.org/project/swarms/" target="_blank">
<img alt="Python" src="https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54" />
<img alt="Version" src="https://img.shields.io/pypi/v/swarms?style=for-the-badge&color=3670A0">
</a>
</p>
<p align="center">
<a href="https://twitter.com/swarms_corp/">🐦 Twitter</a>
<span> • </span>
<a href="https://discord.gg/agora-999382051935506503">📢 Discord</a>
<span> • </span>
<a href="https://swarms.world/explorer">Swarms Platform</a>
<span> • </span>
<a href="https://docs.swarms.world">📙 Documentation</a>
</p>
[![GitHub issues](https://img.shields.io/github/issues/kyegomez/swarms)](https://github.com/kyegomez/swarms-memory/issues) [![GitHub forks](https://img.shields.io/github/forks/kyegomez/swarms)](https://github.com/kyegomez/swarms-memory/network) [![GitHub stars](https://img.shields.io/github/stars/kyegomez/swarms)](https://github.com/kyegomez/swarms-memory/stargazers) [![GitHub license](https://img.shields.io/github/license/kyegomez/swarms-memory)](https://github.com/kyegomez/swarms-memory/blob/main/LICENSE)[![GitHub star chart](https://img.shields.io/github/stars/kyegomez/swarms-memory?style=social)](https://star-history.com/#kyegomez/swarms)[![Dependency Status](https://img.shields.io/librariesio/github/kyegomez/swarms)](https://libraries.io/github/kyegomez/swarms) [![Downloads](https://static.pepy.tech/badge/swarms-memory/month)](https://pepy.tech/project/swarms-memory)
[![Join the Agora discord](https://img.shields.io/discord/1110910277110743103?label=Discord&logo=discord&logoColor=white&style=plastic&color=d7b023)![Share on Twitter](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Share%20%40kyegomez/swarmsmemory)](https://twitter.com/intent/tweet?text=Check%20out%20this%20amazing%20AI%20project:%20&url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms) [![Share on Facebook](https://img.shields.io/badge/Share-%20facebook-blue)](https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms) [![Share on LinkedIn](https://img.shields.io/badge/Share-%20linkedin-blue)](https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&title=&summary=&source=)
[![Share on Reddit](https://img.shields.io/badge/-Share%20on%20Reddit-orange)](https://www.reddit.com/submit?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&title=Swarms%20-%20the%20future%20of%20AI) [![Share on Hacker News](https://img.shields.io/badge/-Share%20on%20Hacker%20News-orange)](https://news.ycombinator.com/submitlink?u=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&t=Swarms%20-%20the%20future%20of%20AI) [![Share on Pinterest](https://img.shields.io/badge/-Share%20on%20Pinterest-red)](https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&media=https%3A%2F%2Fexample.com%2Fimage.jpg&description=Swarms%20-%20the%20future%20of%20AI) [![Share on WhatsApp](https://img.shields.io/badge/-Share%20on%20WhatsApp-green)](https://api.whatsapp.com/send?text=Check%20out%20Swarms%20-%20the%20future%20of%20AI%20%23swarms%20%23AI%0A%0Ahttps%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms)
Here's a more detailed and larger table with descriptions and website links for each RAG system:
| **RAG System** | **Status** | **Description** | **Documentation** | **Website** |
|----------------|-------------|---------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|
| **ChromaDB** | Available | A high-performance, distributed database optimized for handling large-scale AI tasks. | [ChromaDB Documentation](swarms_memory/memory/chromadb.md) | [ChromaDB](https://chromadb.com) |
| **Pinecone** | Available | A fully managed vector database that makes it easy to add vector search to your applications. | [Pinecone Documentation](swarms_memory/memory/pinecone.md) | [Pinecone](https://pinecone.io) |
| **Redis** | Coming Soon | An open-source, in-memory data structure store, used as a database, cache, and message broker. | [Redis Documentation](swarms_memory/memory/redis.md) | [Redis](https://redis.io) |
| **Faiss** | Coming Soon | A library for efficient similarity search and clustering of dense vectors, developed by Facebook AI. | [Faiss Documentation](swarms_memory/memory/faiss.md) | [Faiss](https://faiss.ai) |
| **HNSW** | Coming Soon | A graph-based algorithm for approximate nearest neighbor search, known for its speed and accuracy. | [HNSW Documentation](swarms_memory/memory/hnsw.md) | [HNSW](https://github.com/nmslib/hnswlib) |
This table includes a brief description of each system, their current status, links to their documentation, and their respective websites for further information.
### Requirements:
- `python 3.10`
- `.env` with your respective keys like `PINECONE_API_KEY` can be found in the `.env.examples`
## Install
```bash
$ pip install swarms-memory
```
## Usage
### Pinecone
```python
from typing import List, Dict, Any
from swarms_memory import PineconeMemory
# Example usage
if __name__ == "__main__":
from transformers import AutoTokenizer, AutoModel
import torch
# Custom embedding function using a HuggingFace model
def custom_embedding_function(text: str) -> List[float]:
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")
inputs = tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
)
with torch.no_grad():
outputs = model(**inputs)
embeddings = (
outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
)
return embeddings
# Custom preprocessing function
def custom_preprocess(text: str) -> str:
return text.lower().strip()
# Custom postprocessing function
def custom_postprocess(
results: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
for result in results:
result["custom_score"] = (
result["score"] * 2
) # Example modification
return results
# Initialize the wrapper with custom functions
wrapper = PineconeMemory(
api_key="your-api-key",
environment="your-environment",
index_name="your-index-name",
embedding_function=custom_embedding_function,
preprocess_function=custom_preprocess,
postprocess_function=custom_postprocess,
logger_config={
"handlers": [
{
"sink": "custom_rag_wrapper.log",
"rotation": "1 GB",
},
{
"sink": lambda msg: print(
f"Custom log: {msg}", end=""
)
},
],
},
)
# Adding documents
wrapper.add(
"This is a sample document about artificial intelligence.",
{"category": "AI"},
)
wrapper.add(
"Python is a popular programming language for data science.",
{"category": "Programming"},
)
# Querying
results = wrapper.query("What is AI?", filter={"category": "AI"})
for result in results:
print(
f"Score: {result['score']}, Custom Score: {result['custom_score']}, Text: {result['metadata']['text']}"
)
```
### ChromaDB
```python
from swarms_memory import ChromaDB
chromadb = ChromaDB(
metric="cosine",
output_dir="results",
limit_tokens=1000,
n_results=2,
docs_folder="path/to/docs",
verbose=True,
)
# Add a document
doc_id = chromadb.add("This is a test document.")
# Query the document
result = chromadb.query("This is a test query.")
# Traverse a directory
chromadb.traverse_directory()
# Display the result
print(result)
```
### Faiss
```python
from typing import List, Dict, Any
from swarms_memory.faiss_wrapper import FAISSDB
from transformers import AutoTokenizer, AutoModel
import torch
# Custom embedding function using a HuggingFace model
def custom_embedding_function(text: str) -> List[float]:
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")
inputs = tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
)
with torch.no_grad():
outputs = model(**inputs)
embeddings = (
outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
)
return embeddings
# Custom preprocessing function
def custom_preprocess(text: str) -> str:
return text.lower().strip()
# Custom postprocessing function
def custom_postprocess(
results: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
for result in results:
result["custom_score"] = (
result["score"] * 2
) # Example modification
return results
# Initialize the wrapper with custom functions
wrapper = FAISSDB(
dimension=768,
index_type="Flat",
embedding_function=custom_embedding_function,
preprocess_function=custom_preprocess,
postprocess_function=custom_postprocess,
metric="cosine",
logger_config={
"handlers": [
{
"sink": "custom_faiss_rag_wrapper.log",
"rotation": "1 GB",
},
{"sink": lambda msg: print(f"Custom log: {msg}", end="")},
],
},
)
# Adding documents
wrapper.add(
"This is a sample document about artificial intelligence.",
{"category": "AI"},
)
wrapper.add(
"Python is a popular programming language for data science.",
{"category": "Programming"},
)
# Querying
results = wrapper.query("What is AI?")
for result in results:
print(
f"Score: {result['score']}, Custom Score: {result['custom_score']}, Text: {result['metadata']['text']}"
)
```
# License
MIT
# Citation
Please cite Swarms in your paper or your project if you found it beneficial in any way! Appreciate you.
```bibtex
@misc{swarms,
author = {Gomez, Kye},
title = {{Swarms: The Multi-Agent Collaboration Framework}},
howpublished = {\url{https://github.com/kyegomez/swarms}},
year = {2023},
note = {Accessed: Date}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/swarms-memory",
"name": "swarms-memory",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/af/e0/f50f813c3c03139c5da55d00b6bea434612be7d91ff1840f50b604e173de/swarms_memory-0.1.1.tar.gz",
"platform": null,
"description": "\n<div align=\"center\">\n <a href=\"https://swarms.world\">\n <h1>Swarms Memory</h1>\n </a>\n</div>\n<p align=\"center\">\n <em>The Enterprise-Grade Production-Ready RAG Framework</em>\n</p>\n\n<p align=\"center\">\n <a href=\"https://pypi.org/project/swarms/\" target=\"_blank\">\n <img alt=\"Python\" src=\"https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54\" />\n <img alt=\"Version\" src=\"https://img.shields.io/pypi/v/swarms?style=for-the-badge&color=3670A0\">\n </a>\n</p>\n<p align=\"center\">\n<a href=\"https://twitter.com/swarms_corp/\">\ud83d\udc26 Twitter</a>\n<span> \u2022 </span>\n<a href=\"https://discord.gg/agora-999382051935506503\">\ud83d\udce2 Discord</a>\n<span> \u2022 </span>\n<a href=\"https://swarms.world/explorer\">Swarms Platform</a>\n<span> \u2022 </span>\n<a href=\"https://docs.swarms.world\">\ud83d\udcd9 Documentation</a>\n</p>\n\n\n[![GitHub issues](https://img.shields.io/github/issues/kyegomez/swarms)](https://github.com/kyegomez/swarms-memory/issues) [![GitHub forks](https://img.shields.io/github/forks/kyegomez/swarms)](https://github.com/kyegomez/swarms-memory/network) [![GitHub stars](https://img.shields.io/github/stars/kyegomez/swarms)](https://github.com/kyegomez/swarms-memory/stargazers) [![GitHub license](https://img.shields.io/github/license/kyegomez/swarms-memory)](https://github.com/kyegomez/swarms-memory/blob/main/LICENSE)[![GitHub star chart](https://img.shields.io/github/stars/kyegomez/swarms-memory?style=social)](https://star-history.com/#kyegomez/swarms)[![Dependency Status](https://img.shields.io/librariesio/github/kyegomez/swarms)](https://libraries.io/github/kyegomez/swarms) [![Downloads](https://static.pepy.tech/badge/swarms-memory/month)](https://pepy.tech/project/swarms-memory)\n\n[![Join the Agora discord](https://img.shields.io/discord/1110910277110743103?label=Discord&logo=discord&logoColor=white&style=plastic&color=d7b023)![Share on Twitter](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Share%20%40kyegomez/swarmsmemory)](https://twitter.com/intent/tweet?text=Check%20out%20this%20amazing%20AI%20project:%20&url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms) [![Share on Facebook](https://img.shields.io/badge/Share-%20facebook-blue)](https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms) [![Share on LinkedIn](https://img.shields.io/badge/Share-%20linkedin-blue)](https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&title=&summary=&source=)\n\n[![Share on Reddit](https://img.shields.io/badge/-Share%20on%20Reddit-orange)](https://www.reddit.com/submit?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&title=Swarms%20-%20the%20future%20of%20AI) [![Share on Hacker News](https://img.shields.io/badge/-Share%20on%20Hacker%20News-orange)](https://news.ycombinator.com/submitlink?u=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&t=Swarms%20-%20the%20future%20of%20AI) [![Share on Pinterest](https://img.shields.io/badge/-Share%20on%20Pinterest-red)](https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&media=https%3A%2F%2Fexample.com%2Fimage.jpg&description=Swarms%20-%20the%20future%20of%20AI) [![Share on WhatsApp](https://img.shields.io/badge/-Share%20on%20WhatsApp-green)](https://api.whatsapp.com/send?text=Check%20out%20Swarms%20-%20the%20future%20of%20AI%20%23swarms%20%23AI%0A%0Ahttps%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms)\n\n\nHere's a more detailed and larger table with descriptions and website links for each RAG system:\n\n| **RAG System** | **Status** | **Description** | **Documentation** | **Website** |\n|----------------|-------------|---------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|\n| **ChromaDB** | Available | A high-performance, distributed database optimized for handling large-scale AI tasks. | [ChromaDB Documentation](swarms_memory/memory/chromadb.md) | [ChromaDB](https://chromadb.com) |\n| **Pinecone** | Available | A fully managed vector database that makes it easy to add vector search to your applications. | [Pinecone Documentation](swarms_memory/memory/pinecone.md) | [Pinecone](https://pinecone.io) |\n| **Redis** | Coming Soon | An open-source, in-memory data structure store, used as a database, cache, and message broker. | [Redis Documentation](swarms_memory/memory/redis.md) | [Redis](https://redis.io) |\n| **Faiss** | Coming Soon | A library for efficient similarity search and clustering of dense vectors, developed by Facebook AI. | [Faiss Documentation](swarms_memory/memory/faiss.md) | [Faiss](https://faiss.ai) |\n| **HNSW** | Coming Soon | A graph-based algorithm for approximate nearest neighbor search, known for its speed and accuracy. | [HNSW Documentation](swarms_memory/memory/hnsw.md) | [HNSW](https://github.com/nmslib/hnswlib) |\n\nThis table includes a brief description of each system, their current status, links to their documentation, and their respective websites for further information.\n\n\n### Requirements:\n- `python 3.10` \n- `.env` with your respective keys like `PINECONE_API_KEY` can be found in the `.env.examples`\n\n## Install\n```bash\n$ pip install swarms-memory\n```\n\n\n\n\n## Usage\n\n### Pinecone\n```python\nfrom typing import List, Dict, Any\nfrom swarms_memory import PineconeMemory\n\n\n# Example usage\nif __name__ == \"__main__\":\n from transformers import AutoTokenizer, AutoModel\n import torch\n\n # Custom embedding function using a HuggingFace model\n def custom_embedding_function(text: str) -> List[float]:\n tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n model = AutoModel.from_pretrained(\"bert-base-uncased\")\n inputs = tokenizer(\n text,\n return_tensors=\"pt\",\n padding=True,\n truncation=True,\n max_length=512,\n )\n with torch.no_grad():\n outputs = model(**inputs)\n embeddings = (\n outputs.last_hidden_state.mean(dim=1).squeeze().tolist()\n )\n return embeddings\n\n # Custom preprocessing function\n def custom_preprocess(text: str) -> str:\n return text.lower().strip()\n\n # Custom postprocessing function\n def custom_postprocess(\n results: List[Dict[str, Any]],\n ) -> List[Dict[str, Any]]:\n for result in results:\n result[\"custom_score\"] = (\n result[\"score\"] * 2\n ) # Example modification\n return results\n\n # Initialize the wrapper with custom functions\n wrapper = PineconeMemory(\n api_key=\"your-api-key\",\n environment=\"your-environment\",\n index_name=\"your-index-name\",\n embedding_function=custom_embedding_function,\n preprocess_function=custom_preprocess,\n postprocess_function=custom_postprocess,\n logger_config={\n \"handlers\": [\n {\n \"sink\": \"custom_rag_wrapper.log\",\n \"rotation\": \"1 GB\",\n },\n {\n \"sink\": lambda msg: print(\n f\"Custom log: {msg}\", end=\"\"\n )\n },\n ],\n },\n )\n\n # Adding documents\n wrapper.add(\n \"This is a sample document about artificial intelligence.\",\n {\"category\": \"AI\"},\n )\n wrapper.add(\n \"Python is a popular programming language for data science.\",\n {\"category\": \"Programming\"},\n )\n\n # Querying\n results = wrapper.query(\"What is AI?\", filter={\"category\": \"AI\"})\n for result in results:\n print(\n f\"Score: {result['score']}, Custom Score: {result['custom_score']}, Text: {result['metadata']['text']}\"\n )\n\n\n\n```\n\n\n### ChromaDB\n```python\nfrom swarms_memory import ChromaDB\n\nchromadb = ChromaDB(\n metric=\"cosine\",\n output_dir=\"results\",\n limit_tokens=1000,\n n_results=2,\n docs_folder=\"path/to/docs\",\n verbose=True,\n)\n\n# Add a document\ndoc_id = chromadb.add(\"This is a test document.\")\n\n# Query the document\nresult = chromadb.query(\"This is a test query.\")\n\n# Traverse a directory\nchromadb.traverse_directory()\n\n# Display the result\nprint(result)\n\n```\n\n\n### Faiss\n\n```python\nfrom typing import List, Dict, Any\nfrom swarms_memory.faiss_wrapper import FAISSDB\n\n\nfrom transformers import AutoTokenizer, AutoModel\nimport torch\n\n\n# Custom embedding function using a HuggingFace model\ndef custom_embedding_function(text: str) -> List[float]:\n tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n model = AutoModel.from_pretrained(\"bert-base-uncased\")\n inputs = tokenizer(\n text,\n return_tensors=\"pt\",\n padding=True,\n truncation=True,\n max_length=512,\n )\n with torch.no_grad():\n outputs = model(**inputs)\n embeddings = (\n outputs.last_hidden_state.mean(dim=1).squeeze().tolist()\n )\n return embeddings\n\n\n# Custom preprocessing function\ndef custom_preprocess(text: str) -> str:\n return text.lower().strip()\n\n\n# Custom postprocessing function\ndef custom_postprocess(\n results: List[Dict[str, Any]],\n) -> List[Dict[str, Any]]:\n for result in results:\n result[\"custom_score\"] = (\n result[\"score\"] * 2\n ) # Example modification\n return results\n\n\n# Initialize the wrapper with custom functions\nwrapper = FAISSDB(\n dimension=768,\n index_type=\"Flat\",\n embedding_function=custom_embedding_function,\n preprocess_function=custom_preprocess,\n postprocess_function=custom_postprocess,\n metric=\"cosine\",\n logger_config={\n \"handlers\": [\n {\n \"sink\": \"custom_faiss_rag_wrapper.log\",\n \"rotation\": \"1 GB\",\n },\n {\"sink\": lambda msg: print(f\"Custom log: {msg}\", end=\"\")},\n ],\n },\n)\n\n# Adding documents\nwrapper.add(\n \"This is a sample document about artificial intelligence.\",\n {\"category\": \"AI\"},\n)\nwrapper.add(\n \"Python is a popular programming language for data science.\",\n {\"category\": \"Programming\"},\n)\n\n# Querying\nresults = wrapper.query(\"What is AI?\")\nfor result in results:\n print(\n f\"Score: {result['score']}, Custom Score: {result['custom_score']}, Text: {result['metadata']['text']}\"\n )\n```\n\n\n# License\nMIT\n\n\n# Citation\nPlease cite Swarms in your paper or your project if you found it beneficial in any way! Appreciate you.\n\n```bibtex\n@misc{swarms,\n author = {Gomez, Kye},\n title = {{Swarms: The Multi-Agent Collaboration Framework}},\n howpublished = {\\url{https://github.com/kyegomez/swarms}},\n year = {2023},\n note = {Accessed: Date}\n}\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Swarms Memory - Pytorch",
"version": "0.1.1",
"project_urls": {
"Documentation": "https://github.com/kyegomez/swarms-memory",
"Homepage": "https://github.com/kyegomez/swarms-memory",
"Repository": "https://github.com/kyegomez/swarms-memory"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9b647ad4fb0036f470af326a68347df0ad261fb4b02d9b443e079c5f69cf08ea",
"md5": "08c4e8b377c4e276b43e906f52cbb91d",
"sha256": "0bec766d34bdc4226456b66c7059bb2f355369d404ea67cbc01978683ff54019"
},
"downloads": -1,
"filename": "swarms_memory-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "08c4e8b377c4e276b43e906f52cbb91d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 25166,
"upload_time": "2024-08-28T19:36:04",
"upload_time_iso_8601": "2024-08-28T19:36:04.687762Z",
"url": "https://files.pythonhosted.org/packages/9b/64/7ad4fb0036f470af326a68347df0ad261fb4b02d9b443e079c5f69cf08ea/swarms_memory-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "afe0f50f813c3c03139c5da55d00b6bea434612be7d91ff1840f50b604e173de",
"md5": "024d7f4c6d2a208d3b35fa886ca332bb",
"sha256": "3e5d3a44dab00c9e39b4120fc3fb4750cd8b1c0e06867512f4595931a6544983"
},
"downloads": -1,
"filename": "swarms_memory-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "024d7f4c6d2a208d3b35fa886ca332bb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 21304,
"upload_time": "2024-08-28T19:36:06",
"upload_time_iso_8601": "2024-08-28T19:36:06.144684Z",
"url": "https://files.pythonhosted.org/packages/af/e0/f50f813c3c03139c5da55d00b6bea434612be7d91ff1840f50b604e173de/swarms_memory-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-28 19:36:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "swarms-memory",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "swarms-memory"
}