swarms-tools


Nameswarms-tools JSON
Version 0.3.4 PyPI version JSON
download
home_pagehttps://github.com/The-Swarm-Corporation/swarms-tools
SummaryPaper - Pytorch
upload_time2025-09-03 00:53:55
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements httpx loguru rich serpapi tavily orjson mcp lxml
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Swarms Tools

[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/EamjgSaEQf) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)

## Overview

**Swarms Tools** provides a vast array of pre-built tools for your agents, MCP servers, and multi-agent systems. It is built from the ground up for bleeding-edge performance, leveraging packages like `HTTPX`, `orjson`, and other production-grade libraries. Our goal with this package is to make it easier for agent creators to integrate tools into their agents.

## Key Features

| Feature                                      | Description                                                                                                    |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| **Unified API Integration**                   | Production-ready Python functions for enterprise applications                                                  |
| **Enterprise-Grade Architecture**             | Comprehensive type hints, structured outputs, and enterprise documentation standards                           |
| **Multi-Agent System Compatibility**          | Optimized for seamless integration into Swarms' distributed agent orchestration platforms                      |
| **Extensible Framework**                      | Standardized schema for rapid tool development and deployment                                                  |
| **Enterprise Security**                       | Secure API key management and compliance-ready implementation patterns                                         |
| **Bleeding Edge Performance**                 | Utilizes high-performance libraries such as `httpx` for async HTTP and `orjson` for ultra-fast serialization   |

## Installation

```bash
pip3 install -U swarms-tools
```

## Project Structure

```plaintext
swarms-tools/
├── swarms_tools/
│   ├── finance/
│   │   ├── htx_tool.py
│   │   ├── eodh_api.py
│   │   ├── coingecko_tool.py
│   │   └── defillama_mcp_tools.py
│   ├── social_media/
│   │   └── telegram_tool.py
│   ├── utilities/
│   │   └── logging.py
├── tests/
│   ├── test_financial_data.py
│   └── test_social_media.py
└── README.md
```

## Tools Examples

### HTX Trading Data

Retrieve historical trading data and market analysis from HTX platform.

```python
from swarms_tools import fetch_htx_data

response = fetch_htx_data("swarms")
print(response)
```

### Stock News

Access real-time stock news and market updates for strategic decision-making.

```python
from swarms_tools import fetch_stock_news

news = fetch_stock_news("AAPL")
print(news)
```

### Yahoo Finance API

Comprehensive stock data including pricing, trends, and historical analysis.

```python
from swarms_tools import yahoo_finance_api

stock_data = yahoo_finance_api("AAPL")
print(stock_data)
```

### CoinGecko API

Real-time cryptocurrency market data and pricing information.

```python
from swarms_tools import coin_gecko_coin_api

crypto_data = coin_gecko_coin_api("bitcoin")
print(crypto_data)
```

### DeFi Protocol Analytics

DeFi ecosystem data including protocol TVL and token pricing.

```python
from swarms_tools import get_protocol_tvl

protocol_tvl = await get_protocol_tvl("uniswap-v3")
print(protocol_tvl)
```

### Web Scraper

Enterprise-grade web scraping for content extraction and data mining.

```python
from swarms_tools.search.web_scraper import scrape_single_url_sync

content = scrape_single_url_sync("https://example.com")
print(content.title, content.text)
```

### Telegram API

Automated messaging and communication through Telegram platform.

```python
from swarms_tools import telegram_dm_or_tag_api

telegram_dm_or_tag_api("Critical business update from Swarms Corporation.")
```

### Twitter Tool

Comprehensive Twitter automation for enterprise social media management.

```python
from swarms_tools.social_media.twitter_tool import TwitterTool

twitter_plugin = TwitterTool(options)
post_tweet = twitter_plugin.get_function("post_tweet")
post_tweet("Enterprise update from Swarms Corp")
```

### Dex Screener

Enterprise-grade tool for accessing decentralized exchange data across multiple blockchain networks.

```python
from swarms_tools.finance.dex_screener import (
    fetch_latest_token_boosts,
    fetch_dex_screener_profiles,
)

fetch_dex_screener_profiles()
fetch_latest_token_boosts()
```

### GitHub Tool

GitHub repository management and automation capabilities for development workflows.

```python
from swarms_tools.devs.github import GitHubTool

github_tool = GitHubTool()
repo_info = github_tool.get_repository("swarms-corp/swarms-tools")
```

### Code Executor

Secure code execution environment for development and automation workflows.

```python
from swarms_tools.devs.code_executor import CodeExecutor

executor = CodeExecutor()
result = executor.execute("print('Hello from Swarms Tools')")
```

## Tool Orchestration Framework

The tool chainer enables sequential or parallel execution of multiple tools for complex workflow automation:

```python
from loguru import logger
from swarms_tools.structs import tool_chainer

if __name__ == "__main__":
    logger.add("tool_chainer.log", rotation="500 MB", level="INFO")

    # Define enterprise tools
    def data_analysis_tool():
        return "Data Analysis Complete"

    def reporting_tool():
        return "Report Generated"

    tools = [data_analysis_tool, reporting_tool]

    # Parallel execution for performance optimization
    parallel_results = tool_chainer(tools, parallel=True)
    print("Parallel Results:", parallel_results)

    # Sequential execution for dependency management
    sequential_results = tool_chainer(tools, parallel=False)
    print("Sequential Results:", sequential_results)
```


### Twitter API Integration

Comprehensive Twitter automation for enterprise social media management:

```python
import os
from time import time
from swarm_models import OpenAIChat
from swarms import Agent
from dotenv import load_dotenv
from swarms_tools.social_media.twitter_tool import TwitterTool

load_dotenv()

# Initialize enterprise AI model
model_name = "gpt-4o"
model = OpenAIChat(
    model_name=model_name,
    max_tokens=3000,
    openai_api_key=os.getenv("OPENAI_API_KEY"),
)

# Configure Twitter integration
options = {
    "id": "29998836",
    "name": "mcsswarm",
    "description": "Enterprise Twitter automation platform",
    "credentials": {
        "apiKey": os.getenv("TWITTER_API_KEY"),
        "apiSecretKey": os.getenv("TWITTER_API_SECRET_KEY"),
        "accessToken": os.getenv("TWITTER_ACCESS_TOKEN"),
        "accessTokenSecret": os.getenv("TWITTER_ACCESS_TOKEN_SECRET"),
    },
}

twitter_plugin = TwitterTool(options)
post_tweet = twitter_plugin.get_function("post_tweet")

# Automated content generation and posting
def generate_corporate_content():
    content_prompt = "Generate professional corporate content for social media engagement"
    tweet_text = model.run(content_prompt)
    
    try:
        post_tweet(tweet_text)
        print(f"Content posted successfully: {tweet_text}")
    except Exception as e:
        print(f"Error posting content: {e}")
```

## Enterprise Development Standards

Every tool in **Swarms Tools** adheres to enterprise-grade development standards:

### Development Schema

1. **Modular Architecture**: Encapsulate API logic into reusable, maintainable functions
2. **Type Safety**: Comprehensive Python type hints for input validation and code clarity
3. **Documentation**: Detailed docstrings with parameter specifications and usage examples
4. **Output Standardization**: Consistent return formats for seamless system integration
5. **Security Compliance**: Secure API key management using environment variables

#### Schema Template

```python
def enterprise_data_function(parameter: str, date_range: str) -> str:
    """
    Enterprise-grade data retrieval function.

    Args:
        parameter (str): Business parameter for data retrieval
        date_range (str): Timeframe specification (e.g., '1d', '1m', '1y')

    Returns:
        str: Structured data response for enterprise systems
    """
    pass
```

## Documentation and Support

Comprehensive enterprise documentation is available at [docs.swarms.world](https://docs.swarms.world), providing detailed API references, implementation guides, and best practices for enterprise deployment.

## Community and Support

Join our enterprise community for technical support, platform updates, and exclusive access to advanced agent engineering insights:

| Platform | Description | Link |
|----------|-------------|------|
| Discord | Live technical support and community | [Join Discord](https://discord.gg/EamjgSaEQf) |
| Twitter | Platform updates and announcements | [@swarms_corp](https://twitter.com/swarms_corp) |
| YouTube | Technical tutorials and demonstrations | [Swarms Channel](https://www.youtube.com/channel/UC9yXyitkbU_WSy7bd_41SqQ) |
| Documentation | Official technical documentation | [docs.swarms.world](https://docs.swarms.world) |
| Blog | Technical articles and platform insights | [Medium](https://medium.com/@kyeg) |
| LinkedIn | Professional network and corporate updates | [The Swarm Corporation](https://www.linkedin.com/company/the-swarm-corporation) |
| Events | Enterprise community events and workshops | [Sign up here](https://lu.ma/5p2jnc2v) |
| Onboarding | Enterprise onboarding with platform experts | [Book Session](https://cal.com/swarms/swarms-onboarding-session) |

## Contributing

We welcome enterprise contributions and partnerships. To contribute:

1. **Fork the Repository**: Begin by forking the main repository
2. **Create Feature Branch**: Use descriptive naming: `feature/enterprise-tool-name`
3. **Implement Standards**: Follow enterprise development guidelines
4. **Submit Pull Request**: Open pull request for technical review

## License

This project is licensed under the **MIT License**. See the [LICENSE](LICENSE) file for complete terms and conditions.

---

**"The future belongs to those who dare to automate it."**  
**— The Swarms Corporation**


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/The-Swarm-Corporation/swarms-tools",
    "name": "swarms-tools",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/39/a5/2feeef4134798e150c0132eb17dce82337eb056b744d1748f20129569510/swarms_tools-0.3.4.tar.gz",
    "platform": null,
    "description": "# Swarms Tools\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/EamjgSaEQf) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\n## Overview\n\n**Swarms Tools** provides a vast array of pre-built tools for your agents, MCP servers, and multi-agent systems. It is built from the ground up for bleeding-edge performance, leveraging packages like `HTTPX`, `orjson`, and other production-grade libraries. Our goal with this package is to make it easier for agent creators to integrate tools into their agents.\n\n## Key Features\n\n| Feature                                      | Description                                                                                                    |\n|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|\n| **Unified API Integration**                   | Production-ready Python functions for enterprise applications                                                  |\n| **Enterprise-Grade Architecture**             | Comprehensive type hints, structured outputs, and enterprise documentation standards                           |\n| **Multi-Agent System Compatibility**          | Optimized for seamless integration into Swarms' distributed agent orchestration platforms                      |\n| **Extensible Framework**                      | Standardized schema for rapid tool development and deployment                                                  |\n| **Enterprise Security**                       | Secure API key management and compliance-ready implementation patterns                                         |\n| **Bleeding Edge Performance**                 | Utilizes high-performance libraries such as `httpx` for async HTTP and `orjson` for ultra-fast serialization   |\n\n## Installation\n\n```bash\npip3 install -U swarms-tools\n```\n\n## Project Structure\n\n```plaintext\nswarms-tools/\n\u251c\u2500\u2500 swarms_tools/\n\u2502   \u251c\u2500\u2500 finance/\n\u2502   \u2502   \u251c\u2500\u2500 htx_tool.py\n\u2502   \u2502   \u251c\u2500\u2500 eodh_api.py\n\u2502   \u2502   \u251c\u2500\u2500 coingecko_tool.py\n\u2502   \u2502   \u2514\u2500\u2500 defillama_mcp_tools.py\n\u2502   \u251c\u2500\u2500 social_media/\n\u2502   \u2502   \u2514\u2500\u2500 telegram_tool.py\n\u2502   \u251c\u2500\u2500 utilities/\n\u2502   \u2502   \u2514\u2500\u2500 logging.py\n\u251c\u2500\u2500 tests/\n\u2502   \u251c\u2500\u2500 test_financial_data.py\n\u2502   \u2514\u2500\u2500 test_social_media.py\n\u2514\u2500\u2500 README.md\n```\n\n## Tools Examples\n\n### HTX Trading Data\n\nRetrieve historical trading data and market analysis from HTX platform.\n\n```python\nfrom swarms_tools import fetch_htx_data\n\nresponse = fetch_htx_data(\"swarms\")\nprint(response)\n```\n\n### Stock News\n\nAccess real-time stock news and market updates for strategic decision-making.\n\n```python\nfrom swarms_tools import fetch_stock_news\n\nnews = fetch_stock_news(\"AAPL\")\nprint(news)\n```\n\n### Yahoo Finance API\n\nComprehensive stock data including pricing, trends, and historical analysis.\n\n```python\nfrom swarms_tools import yahoo_finance_api\n\nstock_data = yahoo_finance_api(\"AAPL\")\nprint(stock_data)\n```\n\n### CoinGecko API\n\nReal-time cryptocurrency market data and pricing information.\n\n```python\nfrom swarms_tools import coin_gecko_coin_api\n\ncrypto_data = coin_gecko_coin_api(\"bitcoin\")\nprint(crypto_data)\n```\n\n### DeFi Protocol Analytics\n\nDeFi ecosystem data including protocol TVL and token pricing.\n\n```python\nfrom swarms_tools import get_protocol_tvl\n\nprotocol_tvl = await get_protocol_tvl(\"uniswap-v3\")\nprint(protocol_tvl)\n```\n\n### Web Scraper\n\nEnterprise-grade web scraping for content extraction and data mining.\n\n```python\nfrom swarms_tools.search.web_scraper import scrape_single_url_sync\n\ncontent = scrape_single_url_sync(\"https://example.com\")\nprint(content.title, content.text)\n```\n\n### Telegram API\n\nAutomated messaging and communication through Telegram platform.\n\n```python\nfrom swarms_tools import telegram_dm_or_tag_api\n\ntelegram_dm_or_tag_api(\"Critical business update from Swarms Corporation.\")\n```\n\n### Twitter Tool\n\nComprehensive Twitter automation for enterprise social media management.\n\n```python\nfrom swarms_tools.social_media.twitter_tool import TwitterTool\n\ntwitter_plugin = TwitterTool(options)\npost_tweet = twitter_plugin.get_function(\"post_tweet\")\npost_tweet(\"Enterprise update from Swarms Corp\")\n```\n\n### Dex Screener\n\nEnterprise-grade tool for accessing decentralized exchange data across multiple blockchain networks.\n\n```python\nfrom swarms_tools.finance.dex_screener import (\n    fetch_latest_token_boosts,\n    fetch_dex_screener_profiles,\n)\n\nfetch_dex_screener_profiles()\nfetch_latest_token_boosts()\n```\n\n### GitHub Tool\n\nGitHub repository management and automation capabilities for development workflows.\n\n```python\nfrom swarms_tools.devs.github import GitHubTool\n\ngithub_tool = GitHubTool()\nrepo_info = github_tool.get_repository(\"swarms-corp/swarms-tools\")\n```\n\n### Code Executor\n\nSecure code execution environment for development and automation workflows.\n\n```python\nfrom swarms_tools.devs.code_executor import CodeExecutor\n\nexecutor = CodeExecutor()\nresult = executor.execute(\"print('Hello from Swarms Tools')\")\n```\n\n## Tool Orchestration Framework\n\nThe tool chainer enables sequential or parallel execution of multiple tools for complex workflow automation:\n\n```python\nfrom loguru import logger\nfrom swarms_tools.structs import tool_chainer\n\nif __name__ == \"__main__\":\n    logger.add(\"tool_chainer.log\", rotation=\"500 MB\", level=\"INFO\")\n\n    # Define enterprise tools\n    def data_analysis_tool():\n        return \"Data Analysis Complete\"\n\n    def reporting_tool():\n        return \"Report Generated\"\n\n    tools = [data_analysis_tool, reporting_tool]\n\n    # Parallel execution for performance optimization\n    parallel_results = tool_chainer(tools, parallel=True)\n    print(\"Parallel Results:\", parallel_results)\n\n    # Sequential execution for dependency management\n    sequential_results = tool_chainer(tools, parallel=False)\n    print(\"Sequential Results:\", sequential_results)\n```\n\n\n### Twitter API Integration\n\nComprehensive Twitter automation for enterprise social media management:\n\n```python\nimport os\nfrom time import time\nfrom swarm_models import OpenAIChat\nfrom swarms import Agent\nfrom dotenv import load_dotenv\nfrom swarms_tools.social_media.twitter_tool import TwitterTool\n\nload_dotenv()\n\n# Initialize enterprise AI model\nmodel_name = \"gpt-4o\"\nmodel = OpenAIChat(\n    model_name=model_name,\n    max_tokens=3000,\n    openai_api_key=os.getenv(\"OPENAI_API_KEY\"),\n)\n\n# Configure Twitter integration\noptions = {\n    \"id\": \"29998836\",\n    \"name\": \"mcsswarm\",\n    \"description\": \"Enterprise Twitter automation platform\",\n    \"credentials\": {\n        \"apiKey\": os.getenv(\"TWITTER_API_KEY\"),\n        \"apiSecretKey\": os.getenv(\"TWITTER_API_SECRET_KEY\"),\n        \"accessToken\": os.getenv(\"TWITTER_ACCESS_TOKEN\"),\n        \"accessTokenSecret\": os.getenv(\"TWITTER_ACCESS_TOKEN_SECRET\"),\n    },\n}\n\ntwitter_plugin = TwitterTool(options)\npost_tweet = twitter_plugin.get_function(\"post_tweet\")\n\n# Automated content generation and posting\ndef generate_corporate_content():\n    content_prompt = \"Generate professional corporate content for social media engagement\"\n    tweet_text = model.run(content_prompt)\n    \n    try:\n        post_tweet(tweet_text)\n        print(f\"Content posted successfully: {tweet_text}\")\n    except Exception as e:\n        print(f\"Error posting content: {e}\")\n```\n\n## Enterprise Development Standards\n\nEvery tool in **Swarms Tools** adheres to enterprise-grade development standards:\n\n### Development Schema\n\n1. **Modular Architecture**: Encapsulate API logic into reusable, maintainable functions\n2. **Type Safety**: Comprehensive Python type hints for input validation and code clarity\n3. **Documentation**: Detailed docstrings with parameter specifications and usage examples\n4. **Output Standardization**: Consistent return formats for seamless system integration\n5. **Security Compliance**: Secure API key management using environment variables\n\n#### Schema Template\n\n```python\ndef enterprise_data_function(parameter: str, date_range: str) -> str:\n    \"\"\"\n    Enterprise-grade data retrieval function.\n\n    Args:\n        parameter (str): Business parameter for data retrieval\n        date_range (str): Timeframe specification (e.g., '1d', '1m', '1y')\n\n    Returns:\n        str: Structured data response for enterprise systems\n    \"\"\"\n    pass\n```\n\n## Documentation and Support\n\nComprehensive enterprise documentation is available at [docs.swarms.world](https://docs.swarms.world), providing detailed API references, implementation guides, and best practices for enterprise deployment.\n\n## Community and Support\n\nJoin our enterprise community for technical support, platform updates, and exclusive access to advanced agent engineering insights:\n\n| Platform | Description | Link |\n|----------|-------------|------|\n| Discord | Live technical support and community | [Join Discord](https://discord.gg/EamjgSaEQf) |\n| Twitter | Platform updates and announcements | [@swarms_corp](https://twitter.com/swarms_corp) |\n| YouTube | Technical tutorials and demonstrations | [Swarms Channel](https://www.youtube.com/channel/UC9yXyitkbU_WSy7bd_41SqQ) |\n| Documentation | Official technical documentation | [docs.swarms.world](https://docs.swarms.world) |\n| Blog | Technical articles and platform insights | [Medium](https://medium.com/@kyeg) |\n| LinkedIn | Professional network and corporate updates | [The Swarm Corporation](https://www.linkedin.com/company/the-swarm-corporation) |\n| Events | Enterprise community events and workshops | [Sign up here](https://lu.ma/5p2jnc2v) |\n| Onboarding | Enterprise onboarding with platform experts | [Book Session](https://cal.com/swarms/swarms-onboarding-session) |\n\n## Contributing\n\nWe welcome enterprise contributions and partnerships. To contribute:\n\n1. **Fork the Repository**: Begin by forking the main repository\n2. **Create Feature Branch**: Use descriptive naming: `feature/enterprise-tool-name`\n3. **Implement Standards**: Follow enterprise development guidelines\n4. **Submit Pull Request**: Open pull request for technical review\n\n## License\n\nThis project is licensed under the **MIT License**. See the [LICENSE](LICENSE) file for complete terms and conditions.\n\n---\n\n**\"The future belongs to those who dare to automate it.\"**  \n**\u2014 The Swarms Corporation**\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Paper - Pytorch",
    "version": "0.3.4",
    "project_urls": {
        "Documentation": "https://github.com/The-Swarm-Corporation/swarms-tools",
        "Homepage": "https://github.com/The-Swarm-Corporation/swarms-tools",
        "Repository": "https://github.com/The-Swarm-Corporation/swarms-tools"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd976bf0f83402baaf46a5025872728842f3faddbe424418bf9ca1e91e0cf1cc",
                "md5": "1d1de26c467760c8b7b05f8b81f834fb",
                "sha256": "3a4286f101171cd8c121441f388399e3476301739a5e763bc383ecacc009df67"
            },
            "downloads": -1,
            "filename": "swarms_tools-0.3.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1d1de26c467760c8b7b05f8b81f834fb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 81950,
            "upload_time": "2025-09-03T00:53:53",
            "upload_time_iso_8601": "2025-09-03T00:53:53.953681Z",
            "url": "https://files.pythonhosted.org/packages/bd/97/6bf0f83402baaf46a5025872728842f3faddbe424418bf9ca1e91e0cf1cc/swarms_tools-0.3.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "39a52feeef4134798e150c0132eb17dce82337eb056b744d1748f20129569510",
                "md5": "2e4e8b7b04e728182e8afd86caaf7a15",
                "sha256": "5bcd2e2de6b8caf2714c63f1e9fa24d1cc2af2f8acdc2478690911eb15846fc9"
            },
            "downloads": -1,
            "filename": "swarms_tools-0.3.4.tar.gz",
            "has_sig": false,
            "md5_digest": "2e4e8b7b04e728182e8afd86caaf7a15",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 61879,
            "upload_time": "2025-09-03T00:53:55",
            "upload_time_iso_8601": "2025-09-03T00:53:55.228188Z",
            "url": "https://files.pythonhosted.org/packages/39/a5/2feeef4134798e150c0132eb17dce82337eb056b744d1748f20129569510/swarms_tools-0.3.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-03 00:53:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "The-Swarm-Corporation",
    "github_project": "swarms-tools",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "httpx",
            "specs": []
        },
        {
            "name": "loguru",
            "specs": []
        },
        {
            "name": "rich",
            "specs": []
        },
        {
            "name": "serpapi",
            "specs": []
        },
        {
            "name": "tavily",
            "specs": []
        },
        {
            "name": "orjson",
            "specs": []
        },
        {
            "name": "mcp",
            "specs": []
        },
        {
            "name": "lxml",
            "specs": []
        }
    ],
    "lcname": "swarms-tools"
}
        
Elapsed time: 1.57920s